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Abstract

Spatio-temporal video grounding (STVG) aims to lo-
calize a spatio-temporal tube of a target object in an
untrimmed video based on a query sentence. In this work,
we propose a one-stage visual-linguistic transformer based
framework called STVGBert for the STVG task, which can
simultaneously localize the target object in both spatial and
temporal domains. Specifically, without resorting to pre-
generated object proposals, our STVGBert directly takes a
video and a query sentence as the input, and then produces
the cross-modal features by using the newly introduced
cross-modal feature learning module ST-ViLBert. Based on
the cross-modal features, our method then generates bound-
ing boxes and predicts the starting and ending frames to
produce the predicted object tube. To the best of our knowl-
edge, our STVGBert is the first one-stage method, which can
handle the STVG task without relying on any pre-trained
object detectors. Comprehensive experiments demonstrate
our newly proposed framework outperforms the state-of-
the-art multi-stage methods on two benchmark datasets Vid-
STG and HC-STVG.

1. Introduction
Vision and language play important roles for human to

understand the world. In recent years, with remarkable
progress of deep neural networks, various vision-language
tasks (e.g., image captioning [15, 22], dense video cap-
tion [37, 36] and visual grounding [10, 35]) have attracted
increasing attention from researchers.

Spatial-Temporal Video Grounding (STVG), which was
introduced in the recent work [39], is a new and challeng-
ing vision-language task. Given an untrimmed video and a
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textual description of an object, the STVG task aims to pro-
duce a spatio-temporal tube (i.e., a sequence of bounding
boxes [21, 20]) for the target object described by the given
text description. Different from the existing grounding tasks
in images, both spatial and temporal localizations are re-
quired in the STVG task. Besides, how to effectively align
visual and textual information through cross-modal feature
learning in both spatial and temporal domains is also a key
issue for accurately localizing the target object, especially
in the challenging scenarios where different persons often
perform similar actions within one scene.

Spatial localization in images/videos is a related visual
grounding task, and spatial localization results have been
improved in recent works [13, 35, 14, 27, 30, 31, 12, 29,
2]. In most existing works, a pre-trained object detector is
often required to pre-generate object proposals. However,
these approaches suffer from the following limitations: (1)
The localization performance heavily relies on the quality
of the pre-generated object proposals. (2) It is difficult for
a pre-trained object detector to be well generalized to any
new datasets with unseen classes. (3) Additional training
data and computational cost are required for pre-training the
object detectors. Although the recent works [34, 10, 16, 33]
have attempted to remove the pre-generation process in the
image grounding task, such efforts have not been made for
the video grounding task.

For the STVG task, we are required to conduct localiza-
tion both spatially and temporally. Intuitively, we can solve
this task by using a two-stage approach, in which the tem-
poral visual grounding methods [5, 1] are first used to local-
ize the starting and ending frames of the target objects, and
spatial localization is then performed by using the spatial
visual grounding approaches [3, 17, 29] on the temporally
trimmed videos. However, by handling the two sub-tasks
separately, the pipeline becomes more complicated as each
sub-task is handled by an independent network. Moreover,
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we can also learn better representations by solving both spa-
tial localization and temporal localization in an end-to-end
optimized network. Therefore, it is desirable to propose a
unified one-stage framework for the STVG task.

Motivated by the above observations, in this work,
we propose a one-stage visual-linguistic transformer based
framework STVGBert for the STVG task, which can di-
rectly generate spatio-temporal object tubes from the input
videos and query descriptions without relying on any pre-
trained object detectors. Specifically, our method first takes
a pair of video clip and textual query as the input to produce
the cross-modal features. The cross-modal features are then
used to produce the bounding box for each frame as well as
predict the starting and ending frames, which are then used
to generate the spatio-temporal tubes for the target object.

Considering that promising results have been achieved
by using transformers for various tasks [41, 40, 28], our
STVGBert also builds on a visual-linguistic transformer.
Specifically, the key component is a cross-modal feature
learning module called ST-ViLBert. Different from the rele-
vant work ViLBERT [15] which only encodes temporal in-
formation, our newly proposed ST-ViLBert also preserves
spatial information in the visual input feature. As a result,
our STVGBert can effectively learn the cross-modal repre-
sentation based on both spatial and temporal visual infor-
mation and produce the spatio-temporal object tubes with-
out requiring any pre-trained object detectors. We evalu-
ate our proposed framework STVGBert on two benchmark
datasets, VidSTG [39] and HC-STVG [25], and the ex-
periments demonstrate that our framework outperforms all
state-of-the-art methods.

Our contributions can be summarized as follows:

(1) We propose a new one-stage visual-linguistic trans-
former based framework STVGBert for the spatio-
temporal video grounding task. To the best of our
knowledge, this is the first end-to-end optimized
STVG framework that does not require any pre-trained
object detectors.

(2) We introduce a new cross-modal feature learning mod-
ule, ST-ViLBert, to model spatio-temporal information
and align cross-modal representation at the same time.

(3) Comprehensive experiments conducted on two bench-
mark datasets, VidSTG and HC-STVG, demonstrate
the effectiveness of our framework for the STVG
task. Our one-stage scheme outperforms all multi-
stage state-of-the-art methods by a significant margin.

2. Related Work
2.1. Vision-language Modelling

Transformer-based neural network has been widely ex-
plored for various vision-language tasks [24, 9, 15, 22],

such as visual question answering, image captioning, and
image-text retrieval. For example, the work in [24] pro-
posed to use two single-modal transformers together with
a cross-modal transformer to learn the cross-modal repre-
sentations for the visual question answering task. In [9],
Li et al., pretrained a single cross-stream transformer for
the sentence-image alignment task and used the pretrained
model to tackle the image-text retrieval task. In the works
ViLBERT [15] and VL-BERT [22], the authors trained
general transformer-based neural networks based on large
visual-linguistic datasets, which can benefit several down-
stream tasks. Apart from these works designed for the
image-based visual-linguistic tasks, Sun et al. [23] proposed
VideoBERT for the video captioning task by modeling tem-
poral variations across multiple video frames. However,
this work does not model spatial information within each
frame, so it cannot be applied for the spatio-temporal video
grounding task discussed in this work.

The aforementioned transformer-based neural networks
take the features extracted from either Region of Interests
(RoIs) in images or video frames as the input features, so
spatial information in the feature space cannot be preserved
when transforming them to visual tokens. In this work, we
propose an improved version of ViLBERT [15] to better
model spatio-temporal information in videos and learn bet-
ter cross-modal representations.

2.2. Visual Grounding in Images/Videos

Visual grounding in images/videos aims to localize the
object of interest in an image/video based on a query sen-
tence. In most existing methods [13, 35, 14, 27, 30, 31,
12, 29, 2, 39], a pre-trained object detector is often re-
quired to pre-generate object proposals. The proposal that
best matches the given input description is then selected
as the final result. The work MattNet [35] used a mod-
ular network to explore the attributes and object relation-
ships. For the visual grounding tasks in images, some recent
works [34, 10, 16, 33] proposed new one-stage grounding
frameworks without using the pre-trained object detectors.
For example, Liao et al. [10] used the anchor-free object
detection method [42] to localize the target objects based
on the cross-modal representations. Yang et al. [33] used
sub-queries to generate text-conditional visual features to
improve the performance of one-stage grounding method.

For the video grounding task, Zhang et al. [39] pro-
posed a new method (referred to as STGRN) that does not
rely on the pre-generated tube proposals. Unfortunately,
this work [39] still requires a pre-trained object detector
to first generate object proposals since the output bounding
boxes are retrieved from these candidate bounding boxes.
Similar as in our proposed framework, the recent work
STGVT [25] also adopted a visual-linguistic transformer
to learn cross-modal representations for the spatio-temporal
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Figure 1. (a) The overview of our spatio-temporal video grounding framework STVGBert. Our one-stage framework consists of the
STVGBert-core module and the Tube Generation module, which takes video and textual query pairs as the input to generate spatio-temporal
object tubes containing the object of interest. In (b), the STVGBert-core module consists of two branches, the Spatial Visual Grounding
(SVG) Branch and the Temporal Visual Grounding (TVG) Branch, which simultaneously generates bounding boxes and predicts the
probability of each frame being the starting/ending frame.

video grounding task. But this work [25] also needs to
first generate the tube proposals as in most existing meth-
ods [2, 29]. Additionally, in the works [18, 8, 38, 32], the
pre-trained object detectors are also required to generate ob-
ject proposals for object relationship modelling.

In contrast to these works [39, 25, 18, 8, 38, 32], we
introduce a new framework with a newly proposed cross-
modal feature learning module to generate object tubes
without requiring any pre-trained object detectors.

3. Methodology
In this section, we briefly introduce the overall frame-

work of our proposed method in Section 3.1, and then we
present how to encode the visual features and the textual
features from the input videos and the textual query descrip-
tions (Section 3.2), respectively, as well as introduce our
newly proposed multi-modal representation learning mod-
ule ST-ViLBERT (Section 3.3). We then describe the spa-
tial and temporal localization process for generating spatio-
temporal object tubes in Section 3.4. Finally, the training
details are introduced in Section 3.5

3.1. Overview

We denote an untrimmed video V with K ∗ T frames
as a set of non-overlapping video clips, namely we have

V = {Vclip
k }Kk=1, where Vclip

k indicates the k-th video clip
consisting of T frames, and K is the total number of video
clips in the untrimmed video. We also denote a textual
description as S = {sn}Nn=1, where sn indicates the n-th
word in the description S, and N is the total number of
words. The STVG task aims to output the spatio-temporal
tube B = {bt}tet=ts containing the object of interest (i.e.,
the target object) between the ts-th and the te-th frames,
where bt is a 4-d vector indicating the top-left and bottom-
right spatial coordinates of the target bounding box in the
t-th frame. ts and te represent the temporal starting and
ending frames of the object tube B, respectively.

In this task, it is required to perform both spatial localiza-
tion and temporal localization based on the query sentence.
We propose a unified STVG framework STVGBert to si-
multaneously localize the target of interest in both spatial
and temporal domains. Unlike the previous methods [29, 2],
which first output a set of tube proposals by linking the pre-
detected object bounding boxes, our STVGBert does not re-
quire any pre-trained object detectors. As shown in Fig. 1,
our STVGBert extracts the visual features and the textual
embedding from the video frames and the textual query, re-
spectively, and then produces the text-guided visual feature
by using our newly introduced cross-modal feature learn-
ing module, and finally spatially and temporally localizes
the object of interest to generate an object tube, including
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the bounding boxes bt for the target object in each frame
and the indexes of the starting and ending frames. In the
following sections, we will describe each step in details.

3.2. Visual Feature and Textual Feature Encoding

We first use ResNet-101 [6] as the image encoder to ex-
tract the visual feature. The output from the 4th residual
block is reshaped to the size of HW ×C with H , W and C
indicating the height, the width, and the number of channels
of the feature map, respectively, which is then used as the
extracted visual feature. For the k-th video clip, we stack
the extracted visual features from each frame in this video
clip to construct the clip feature Fclip

k ∈ RT×HW×C , which
is then fed into our cross-modal feature learning module to
produce the multi-modal visual feature.

For the textual descriptions, we use a word embedding
module to map each word in the description as a word vec-
tor, and each word vector is considered as one textual input
token. Additionally, we add two special tokens, [‘CLS’]
and [‘SEP’], before and after the textual input tokens of the
description to construct the complete textual input tokens
E = {en}N+2

n=1 , where en is the n-th textual input token.

3.3. Multi-modal Feature Learning

Given the visual input feature Fclip
k and the textual input

tokens E, we develop a new cross-modality modeling mod-
ule called ST-ViLBERT, to learn the visual-linguistic rep-
resentation. Following the structure of ViLBERT [15], our
ST-ViLBERT module consists of a visual branch and a tex-
tual branch where both branches adopt the multi-layer trans-
former encoder [26] structure. As shown in Fig. 2(a), the
visual branch interacts with the textual branch via a set of
co-attention layers, which exchanges information between
the key-value pairs to generate the text-guided visual fea-
ture (or vice versa). Please refer to the work in [15] for
further details.

The work ViLBERT [15] takes the visual features ex-
tracted from all pre-generated proposals within an image as
the visual input to learn the visual-linguistic representation
(see Fig. 2(a)). However, since these visual features are spa-
tially pooled by using the average pooling operation, spatial
information in the visual input feature space will be lost.
While such information is important for predicting bound-
ing boxes, this is not an issue for ViLBERT as it assumes
the bounding boxes are already generated by using the pre-
trained object detectors.

Our ST-ViLBERT module is designed for spatial lo-
calization without requiring any pre-generated bounding
boxes, where the key is to preserve spatial information when
performing cross-modal feature learning. Specifically, we
introduce a Spatio-temporal Combination and Decomposi-
tion (STCD) module to replace the Multi-head Attention
and Add & Norm modules for the visual branch in ViL-
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QueryKeyValue
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Add & Norm
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Figure 2. (a) The overview of one co-attention layer in ViL-
BERT [15]. The co-attention layer, consisting of a visual branch
and a textual branch, generates the visual-linguistic representa-
tions by exchanging the key-value pairs for the multi-head atten-
tion blocks. (b) The structure of our Spatio-temporal Combination
and Decomposition (STCD) module, which replaces the “Multi-
head attention” and “Add & Norm” blocks in the visual branch of
ViLBERT (marked in the green dotted box in (a)).

BERT. As shown in Fig. 2(b), our STCD module respec-
tively applies the spatial and temporal average pooling op-
erations on the input visual feature (i.e., the visual output
from the last layer) to produce the initial temporal fea-
ture with the size of T × C and the initial spatial feature
with the size of HW × C, which are then concatenated
to construct the combined visual feature with the size of
(T +HW )×C. We then pass the combined visual feature
to the textual branch, which is used as key and value in the
multi-head attention block of the textual branch. Addition-
ally, the combined visual feature is also fed to the multi-
head attention block of the visual branch together with the
textual input (i.e., the textual output from the last layer) to
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generate the initial text-guided visual feature with the size
of (T +HW )×C, which is then decomposed into the text-
guided temporal feature with the size of T ×C and the text-
guided spatial feature with the size of HW ×C. These two
features are then respectively replicated HW and T times
to match the dimension of the input visual feature. The
replicated features and the input visual feature are added
up and normalized to generate the intermediate visual fea-
ture with the size of T × HW × C. The remaining part
(including the textual branch) are the same as that in ViL-
BERT [15]. In our ST-ViLBERT, we take the output from
the visual and textual branches in the last co-attention layer
as the text-guided visual feature Ftv ∈ RT×HW×C and the
visual-guided textual feature, respectively.

3.4. Spatial and Temporal Localization

In our framework, the cross-modal features from our ST-
ViLBert module, including the text-guided visual feature
Ftv and the visual-guided textual feature, are fed into two
branches, SVG branch and TVG branch, for spatial visual
grounding and temporal visual grounding, respectively.
Spatial Localization As shown in Fig. 1(b), the SVG
branch takes the text-guided visual feature Ftv to predict
the bounding box bt at each frame. We first reshape Ftv to
the size of T ×H ×W × C. Taking the feature from each
individual frame (with the size of H ×W ×C) as the input
of three deconvolution layers, we then upsample the spatial
resolution by a factor of 8. Similar as in CenterNet [42], the
upsampled feature is used as the input of two parallel detec-
tion heads, with each head consisting of a 3×3 convolution
layer for feature extraction and a 1 × 1 convolution layer
for dimension reduction. The first detection head outputs
a heatmap A ∈ R8H×8W , where the value at each spatial
location indicates the probability of this position being the
bounding box center of the target object, and the second
head regresses the size (i.e., the height and width) of the
target bounding box at each position. In the heatmap, we
select the spatial location with the highest probability as the
predicted bounding box center, and use the corresponding
predicted height and width at this selected position to cal-
culate the top-left and the bottom-right coordinates of the
predicted bounding box.
Temporal Localization In addition to bounding box pre-
diction by using the SVG branch, our TVG branch predicts
the positions of the starting frame and the ending frame
based on both text-guided visual feature and the visual-
guided textual feature. As shown in Fig. 1(b), we apply spa-
tial average pooling on the text-guided visual feature Ftv to
produce the global text-guided visual feature Fgtv ∈ RT×C
for each input video clip with T frames. The global text-
guided visual feature is then fed into two parallel temporal
convolution blocks to produce the starting and ending visual
features, where each temporal convolution block consists of

three 1D convolutional layers with the kernel size of 3. The
size of both starting and ending visual features is T×C. We
also feed the global textual feature (i.e., the visual-guided
textual feature corresponding to the token [‘CLS’]) into a
MLP layer to produce the intermediate textual feature in
the C-dimension common feature space. By using the cor-
relation operation, we can then compute the initial starting
(resp., ending) prediction score for each frame between the
corresponding starting (resp., ending) visual feature and the
intermediate textual feature in the common feature space.
After applying the Sigmoid activation function, we produce
the final starting (resp., ending) prediction score ps (resp.,
pe) for each frame in one video clip, which indicates the
probability of each frame being the starting (resp., the end-
ing) frame for the target tube.

Tube Generation After producing bounding boxes and
the starting and ending prediction scores for all frames from
all video clips, we then combine them across the tempo-
ral domain to construct an initial object tube, namely, a se-
quence of starting scores and a sequence of ending scores
for all K ∗T frames in the whole video. After that, the tem-
poral positions of the starting and ending frames (ts, te) can
be determined by selecting the frames with the largest start-
ing score and the largest ending score, respectively. More-
over, the bounding boxes from the frames before ts and af-
ter te are removed. Finally, the temporal boundaries (ts, te)
and the predicted bounding boxes bt form the tube predic-
tion result B = {bt}tet=ts .

3.5. Loss Functions

We use a combination of three focal losses and a L1 loss
to train our STVGBert. At the training stage, we randomly
sample a set of video clips with T consecutive frames, and
then we select the video clips as the training samples which
contain at least one frame having a ground-truth bound-
ing box. Next, we take one video clip with T consecu-
tive frames as an example for better explanation. Specif-
ically, for the i-th frame in each training video clip, we
denote the center, width, and height of the ground-truth
bounding box as (x̂i, ŷi), ŵi, ĥi, respectively. Addition-
ally, we also denote the indexes of the ground-truth start-
ing and ending frames as t̂s and t̂e. Based on the ground-
truth bounding box, we follow [42] to generate a center
heatmap Â for the i-th frame by using the Gaussian ker-
nel âx,yi = exp(− (x−x̂i)

2+(y−ŷi)2
2σ2

i
), where âx,yi is the value

of Âi ∈ R8H×8W at the spatial location (x, y), and σi is
the bandwidth parameter, which is adaptively determined
based on the object size [7]. Similarly, we can generate two
1D temporal heatmaps p̂s and p̂e ∈ RT for the starting and
ending positions, respectively. For training our STVGBert,
the objective function Ltotal for each training video clip is
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defined as follows:

Ltotal =λ1
1

T

T∑
i=1

Lsize(w
x̂i,ŷi
i , hx̂i,ŷi

i , ŵi, ĥi)

+ λ2Ls(ps, p̂s) + λ3Le(pe, p̂e)

+ λ4
1

T

T∑
i=1

Lc(Ai, Âi),

(1)

where Ai ∈ R8H×8W is the predicted heatmap, ps and
pe are the predicted starting and ending score sequences,
wx̂i,ŷi
i and hx̂i,ŷi

i are the predicted width and height of a
bounding box centered at the location (x̂i,ŷi) for the i-th
frame. Lc, Ls and Le are the focal loss [11] for predicting
the bounding box center and the temporal positions of start-
ing and ending frames, respectively; Lsize is a L1 loss for
regressing the size of the bounding box. We empirically set
the loss weights as λ1 = 0.1 and λ2 = λ3 = λ4 = 1.

4. Experiment
4.1. Experiment Setup

Datasets We evaluate our proposed framework on the
VidSTG [39] dataset and the HC-STVG [25] dataset.

-VidSTG. This dataset consists of 99,943 sentence de-
scriptions with 44,808 declarative sentences and 55,135 in-
terrogative sentences describing 79 types of objects appear-
ing in the untrimmed videos. Following [39], we divide the
sentence descriptions into the training set, the validation set,
and the testing set with 36,202 (resp., 44,482), 3,996 (resp.,
4,960), and 4,610 (resp., 5,693) declarative (resp., interrog-
ative) sentences. The described objects in the untrimmed
videos are annotated with the spatio-temporal tubes.

-HC-STVG. This dataset consists of 5,660 video-
description pairs and all videos are untrimmed. This dataset
is human-centric since all videos are captured in multi-
person scenes and the descriptions contain rich expressions
related to human attributes and actions. This dataset is di-
vided into the training set and the testing set with 4,500 and
1,160 video-sentence pairs, respectively. All target persons
are annotated with spatio-temporal tubes.
Implementation details We use the ResNet-101 [6] net-
work pretrained on ImageNet [4] as our image encoder to
extract the visual features from the RGB frames in the input
videos. Our whole framework, including the ResNet-101, is
end-to-end optimized. For the ST-ViLBERT module in our
STVGBert, we employ the ViLBERT model pretained on
the Conceptual Caption dataset [19] for initialization. Fol-
lowing [39], we sample the input videos at the frame rate of
5fps. The batch size and the initial learning rate are set to be
6 and 0.00001, respectively. After training our model for 50
epochs, we decrease the learning rate by a factor of 10 and
then train our model for another 10 epochs. The temporal

length of each video clip T is set as 20. Our method is im-
plemented by using PyTorch on the machine with a single
V100 GPU.

Evaluation metrics We follow [39] to use m vIoU and
vIoU@R as our evaluation criteria. The vIoU is calculated
as vIoU = 1

|SU |
∑
t∈SI

rt, where rt is the IoU between the
detected bounding box and the ground-truth bounding box
at frame t, the set SI contains the intersected frames be-
tween the detected tubes and the ground-truth tubes (i.e.,
the intersection set between the frames from both tubes),
and SU is the union of two sets of frames from the de-
tected tubes and the ground-truth tubes. The m vIoU score
is defined as the average vIoU score over all testing videos,
and vIoU@R refers to the ratio of the testing videos with
vIoU > R over all the testing videos.

Baseline Methods We compare our method with the ex-
isting STVG methods proposed in [39] and [25].

-STGRN [39] is the state-of-the-art method on the Vid-
STC dataset. Although this method does not need to pre-
generate the tube proposals, it still requires the pre-trained
detector to produce the bounding box proposals in each
frame, which are then used to build the spatial relation graph
and the temporal dynamic graph. And the final bound-
ing boxes are selected from these proposals. Therefore, its
performance is highly dependent on the quality of the pre-
generated proposals.

-STGVT [25] is the state-of-the-art method on the HC-
STVG dataset. Similar to our proposed ST-ViLBert, it also
adopts a visual-linguistic transformer module to learn the
cross-modal representations. However, STGVT relies on a
pre-trained object detector and a linking algorithm to gen-
erate the tube proposals, while our framework does not re-
quire any pre-generated tubes.

In addition, given the recent research progress in spatial
visual grounding and temporal visual grounding, six base-
line methods can be constructed by combining the methods
from these two tasks. Specifically, we follow [39] and [25]
to first respectively use the temporal visual grounding meth-
ods TALL [5] and L-Net [1] to predict the temporal posi-
tions of the starting and ending frames of the target objects,
which are then used to temporally trim the input videos.
Based on the temporally trimmed videos generated by ei-
ther TALL or L-Net, a frame-level visual grounding method
GroundeR [17] and two tube-level video grounding ap-
proaches STPR [29] and WSSTG [3] are employed to gen-
erate the bounding boxes for the target objects, which are
then used to produce the final spatio-temporal object tubes.
These six baseline methods are referred to as GroundeR +
TALL, STPR + TALL, WSSTG + TALL, GroundeR +
L-Net, STPR + L-Net and WSSTG + L-Net, respectively.
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Table 1. Results of different methods on the VidSTG dataset. “*” indicates the results are quoted from the work in [39]

Methods
Declarative Sentence Interrogative Sentence

m vIoU(%) vIoU@0.3(%) vIoU@0.5(%) m vIoU(%) vIoU@0.3(%) vIoU@0.5(%)
GroundeR [17] + TALL [5]* 9.78 11.04 4.09 9.32 11.39 3.24

STPR [29] + TALL [5]* 10.40 12.38 4.27 9.98 11.74 4.36
WSSTG [3] + TALL [5]* 11.36 14.63 5.91 10.65 13.90 5.32

GroundeR [17] + L-Net [1]* 11.89 15.32 5.45 11.05 14.28 5.11
STPR [29] + L-Net [1]* 12.93 16.27 5.68 11.94 14.73 5.27
WSSTG [3] + L-Net [1]* 14.45 18.00 7.89 13.36 17.39 7.06

STGRN [39]* 19.75 25.77 14.60 18.32 21.10 12.83
STVGBert (Ours) 23.97 30.91 18.39 22.51 25.97 15.95

Table 2. Results of different methods on the HC-STVG dataset.
“*” indicates the results are quoted from the work in [25]

Methods m vIoU vIoU@0.3 vIoU@0.5
STGVT [25]* 18.15 26.81 9.48

STVGBert (Ours) 20.42 29.37 11.31

4.2. Comparison with the State-of-the-art Methods

We compare our proposed framework with the state-of-
the-art methods on both VidSTG and HC-STVG datasets.
The results on these two datasets are shown in Table 1 and
Table 2. From the results, we have the following observa-
tions. 1) Our proposed method outperforms the state-of-
the-art methods by a large margin on both datasets in terms
of all evaluation metrics. 2) On the VidSTG dataset, for the
first six baseline methods in Table 1, we first perform tem-
poral visual grounding by using either TALL or L-Net, and
then perform spatial visual grounding to produce the final
results. In contrast, our method can simultaneously gener-
ate bounding boxes and temporal boundaries to form spatio-
temporal object tubes, and our method significantly outper-
forms these two-stage baseline approches, which demon-
strates the effectiveness of our proposed one-stage approach
STVGBert. 3) In Table 2, both STGVT and our STVGBert
apply the visual-linguistic transformer to learn cross-modal
representations, but our method outperforms STGVT by a
noticeable margin. Additionally, STGVT requires the pre-
trained object detectors to generate a set of proposals, while
our method STVGBert, which includes the improved trans-
former module ST-ViLBert, can directly deal with the input
video clips.

4.3. Ablation Study

In this section, we take the VidSTG dataset as an exam-
ple to conduct ablation study and investigate the contribu-
tions of different components in our proposed framework.
Effectiveness of the one-stage framework As intro-
duced in Sec. 3.4, with two carefully-designed branches,
our method can handle spatial and temporal visual ground-
ing simultaneously. In this section, we first conduct the ex-
periments to demonstrate the performance of each single
branch. And then we compare our one-stage scheme with

its two-stage counterpart to demonstrate the effectiveness of
the proposed one-stage framework. Specifically, we intro-
duce the following variants of our STVGBert method for
ablation study. (1) STVGBert w/o TVG branch: in this
alternative method, we remove the TVG branch from our
STVGBert framework, which only produces the spatial vi-
sual grounding results; (2) STVGBert w/o SVG branch:
in this variant, we remove the SVG branch from our STVG-
Bert framework, which only produces the temporal visual
grounding results; (3) STVGBert-2Stage: in this alterna-
tive method, we first use STVGBert w/o SVG branch to gen-
erate a temporally trimmed input video, and then use STVG-
Bert w/o TVG branch to generate the bounding boxes based
on the temporally trimmed video and finally produce the
spatio-temporal object tubes.

To further investigate how one-stage architecture im-
proves the performance, we conduct the experiments un-
der two different settings. 1) w/o Tem. GT (Default):
In this setting, we compare the spatio-temporal visual
grounding results of the three baseline methods STVG-
Bert w/o TVG branch, STVGBert w/o SVG branch, and
STVGBert-2Stage, as well as our STVGBert without us-
ing the ground-truth temporal annotation (i.e., the ground-
truth starting and ending frames are not available). For
STVGBert w/o TVG branch, since it only produces the
spatial visual grounding results, the generated bounding
boxes from the whole untrimmed input videos are used as
the spatio-temporal video grounding results. For STVG-
Bert w/o SVG branch, it only predicts the temporal bound-
aries (i.e., the starting and ending frames), so we use the
whole image of each frame between the predicted starting
and ending frames as the spatio-temporal video ground-
ing results. 2) w/ Tem. GT: In this alternative setting,
the ground-truth temporal annotation is available and we
compare the spatio-temporal visual grounding results gen-
erated by STVGBert w/o TVG branch+Tem. GT and STVG-
Bert+Tem. GT. Note that for STVGBert+Tem. GT, we sim-
ply ignore the predicted temporal grounding results pro-
duced by our framework STVGBert, and instead use the
ground-truth temporal annotation. All the experimental re-
sults are reported in Table 3.

In Table 3, under the default setting, we have the fol-
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Table 3. Results of our method and its variants on the VidSTG dataset. Note that for STVGBert+Tem. GT, we simply ignore the temporal
grounding results produced by the corresponding method, and use the ground-truth information instead.

Setting Methods
Declarative Sentence Grounding Interrogative Sentence Grounding

m vIoU vIoU@0.3 vIoU@0.5 m vIoU vIoU@0.3 vIoU@0.5

w/o Tem. GT
(Default)

STVGBert w/o TVG branch 18.94 24.52 13.85 17.54 20.28 11.79
STVGBert w/o SVG branch 7.21 4.59 1.21 6.98 4.21 1.05

STVGBert-2Stage 22.51 29.74 17.58 21.05 24.99 15.01
STVGBert-Simple 21.27 28.52 16.74 19.87 23.59 13.95

STVGBert 23.97 30.91 18.39 22.51 25.97 15.95

w/ Tem. GT
STVGBert w/o TVG branch + Tem. GT 45.69 63.92 50.75 42.95 56.29 46.78

STVGBert-Simple + Tem. GT 41.75 59.94 44.51 39.12 51.54 40.21
STVGBert + Tem. GT 47.25 66.16 53.09 44.12 59.77 49.28

lowing observations. First, the results of STVGBert w/o
SVG branch are very poor as it dose not output the bound-
ing boxes. Second, the spatio-temporal video grounding
results of STVGBert w/o TVG branch and STVGBert w/o
SVG branch can be further improved by combining these
two methods as an alternative two-stage approach (i.e.,
STVBert-2Stage). Third, we also observe that our one-stage
STVGBert framework outperforms this alternative method
STVBert-2Stage in terms of all evaluation metrics, which
demonstrates the effectiveness of the proposed one-stage
framework. In Table 3, under the alternative setting w/
Tem. GT, both STVGBert w/o TVG branch+Tem. GT and
STVGBert+Tem. GT use the ground-truth temporal anno-
tation (i.e., Tem. GT) as the temporal visual grounding
results. In this case, the only difference between these
two methods is from the spatial grounding results. There-
fore, the improvement of STVGBert+Tem. GT over STVG-
Bert w/o TVG branch+Tem. GT indicates that our newly
proposed framework STVGBert achieves better spatial vi-
sual grounding performance, i.e., our method produces
more accurate bounding boxes. Finally, all these results also
indicate that it is beneficial to jointly optimize the objective
function related to both spatial and temporal visual ground-
ing in a one-stage framework as our scheme benefits from
multi-task learning.

Effectiveness of the ST-ViLBERT Module In our pro-
posed STVGBert framework, the key component is our ST-
ViLBERT module. Different from ViLBERT [15], which
does not model spatial information for the input visual fea-
tures, the ST-ViLBERT module in our STVGBert frame-
work can preserve both spatial and temporal information
from the input visual features, so that our method can learn
a better spatio-temporal representation. To evaluate the ef-
fectiveness of our ST-ViLBERT, we introduce an alternative
method by replacing our ST-ViLBERT in our STVGBert
framework with the existing scheme ViLBERT, which is re-
ferred to as STVGBert-Simple. Specifically, in STVGBert-
Simple, for each input video clip, the spatial average pooling
operation is applied on top of the clip features to produce
the feature vector for each frame of the video clip. These
feature vectors are then directly fed into ViLBERT as the

visual input together with the textual input to generate the
cross-modal representations. We then take the generated
cross-modal representation as the residual feature and add
it to the original clip features to produce the input features
to the SVG branch. The experimental results are reported in
Table 3 (i.e., the Default setting). In addition to that, we also
conduct the experiments for STVGBert-Simple under the al-
ternative setting w/ Tem. GT, where the temporal ground-
ing results generated by STVGBert-Simple are replaced by
the ground-truth temporal annotation, and the method is re-
ferred to as STVGBert-Simple+Tem. GT.

As shown in Table 3, our STVGBert outperforms
STVGBert-Simple under the default setting. Moreover,
when the ground-truth temporal annotation is available,
STVGBert+Tem. GT also performs much better than
STVGBert-Simple+Tem. GT, i.e., the gains ranges from
5.0% to 9.0%, which indicates the effectiveness of our
newly proposed ST-ViLBert module by additionally pre-
serving spatial information.

5. Conclusion

In this work, we have proposed a new one-stage spatio-
temporal video grounding framework STVGBert based on
a visual-linguistic transformer to produce spatio-temporal
object tubes for a given query sentence, which consists
of a spatial visual grounding branch and a temporal vi-
sual grounding branch. Besides, we have introduced a new
cross-modal feature learning method ST-ViLBERT within
our STVGBert framework. With ST-ViLBert, our STVG-
Bert framework can produce spatio-temporal object tubes
without requiring any pre-trained object detector. Compre-
hensive experiments on two benchmark datasets VidSTG
and HC-STVG demonstrate the effectiveness of our newly
proposed framework for spatio-temporal video grounding.
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