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Abstract
The problem of fine-grained sketch-based image retrieval (FG-SBIR) is defined and investigated in this paper. In FG-SBIR,
free-hand human sketch images are used as queries to retrieve photo images containing the same object instances. It is
thus a cross-domain (sketch to photo) instance-level retrieval task. It is an extremely challenging problem because (i) visual
comparisons and matching need to be executed under large domain gap, i.e., from black and white line drawing sketches to
colour photos; (ii) it requires to capture the fine-grained (dis)similarities of sketches and photo imageswhile free-hand sketches
drawn by different people present different levels of deformation and expressive interpretation; and (iii) annotated cross-
domain fine-grained SBIR datasets are scarce, challenging many state-of-the-art machine learning techniques, particularly
those based on deep learning. In this paper, for the first time, we address all these challenges, providing a step towards the
capabilities that would underpin a commercial sketch-based object instance retrieval application. Specifically, a new large-
scale FG-SBIR database is introduced which is carefully designed to reflect the real-world application scenarios. A deep
cross-domain matching model is then formulated to solve the intrinsic drawing style variability, large domain gap issues,
and capture instance-level discriminative features. It distinguishes itself by a carefully designed attention module. Extensive
experiments on the new dataset demonstrate the effectiveness of the proposed model and validate the need for a rigorous
definition of the FG-SBIR problem and collecting suitable datasets.

Keywords Fine-grained · Sketch understanding · Image retrieval · Cross-modality · Deep learning

1 Introduction

Existing image retrieval paradigms are still dominated
by methods that use text or exemplar images as input
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(Krizhevsky and Hinton 2011; Moulin et al. 2014; Johnson
et al. 2015; Noh et al. 2017). Since the main applications
of image retrieval is to find specific object instances (e.g.,
a particular shoe worn by a pedestrian that one just saw on
the street), the two modalities have different strengths and
weaknesses: textual queries are easy to obtain (just involving
typing some words), but often unable to accurately describe
the visual appearance of the object instance (e.g., it can be a
tall order for a non-fashion-expert to describe exactly what
a shoe looks like); in contrast, an image is worth a thousand
words, so if a picture of that object can be obtained, instance-
level image retrieval is made much easier; however, taking a
photo could be difficult or even not possible (e.g., it would be
generally considered to be rude to take a photo of a stranger’s
shoe on the street).

Due to the proliferation of touch-screen devices, only very
recently has sketch-based image retrieval (SBIR) started to
return as a practical form of retrieval (Eitz et al. 2010, 2011;
Lin et al. 2013; James et al. 2014;Wang et al. 2015; Bui et al.
2016, 2018; Zhang et al. 2018). Comparedwith text, sketches
are incredibly intuitive to humans and have been used since
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Fig. 1 Free-hand sketch is ideal for fine-grained instance-level image
retrieval

pre-historic times to conceptualise and depict visual objects
(Marr 1982; Landay andMyers 2001). Furthermore, a unique
characteristic of sketches in the context of image retrieval is
that they offer inherently fine-grained visual descriptions –
a sketch speaks for a ‘hundred’ words. Importantly, com-
pared with photos, it is also much easier to produce: it can
be obtained almost anywhere and anytime based on a mental
recollection of the object instance.

However, existingSBIRstudiesmainly focus on retrieving
images of the same category as a depicted sketch (Eitz et al.
2010, 2011;Hu et al. 2010; Cao et al. 2011, 2010;Wang et al.
2010; Hu et al. 2011; Lin et al. 2013; James et al. 2014;Wang
et al. 2015; Hu and Collomosse 2013; Bui et al. 2016, 2018),
thus not exploiting the real fine-grained strength of SBIR
for instance-level retrieval. This oversight pre-emptively lim-
its the practical value of SBIR since the text is often a
simpler form of input when only category-level retrieval is
required. E.g., one would rather type in the word “shoe” to
retrieve the target object rather than sketching a shoe. Exist-
ing commercial image search engines already do a great job
of category-level image retrieval based on text queries. In
contrast, it is when aiming to retrieve a particular shoe that
sketching may be preferable than elucidating a long textual
description of it. Figure 1 illustrates an application scenario
of using free-hand sketch for fine-grained image search.

This paper investigates the problem of fine-grained SBIR
(FG-SBIR) at instance-level, opening a new research direc-
tion for human free-hand1 sketch analysis in computer vision.
Specifically, we consider that since in most application sce-
narios, especially those online shopping scenarios, when a
user resorts to sketch as the means of query input, s/he has
already known what category the object instance belongs to.
Importantly, the gallery photo images to be searched against
have also been organised into specific object categories to
limit the search space (e.g. one would search in the shoe
section of a shopping website for shoes). FG-SBIR is thus
mainly about matching object instance of a given category

1 Free-hand sketch in this work refers to sketches drawn by amateurs
based on their mental recollection. Specifically, we assume that before
a human draws a sketch, (s)he has seen a reference object instance, but
does not have the object or a photo at hand while drawing.

across the sketch and photo domains. In contrast, the exist-
ing attempts of defining FG-SBIR either confuse instance to
pose retrieval (Li et al. 2014) or do not clearly separate the
category-level and instance-level SBIR problems (Sangkloy
et al. 2016).

As a cross-domain instance-level retrieval problem, FG-
SBIR faces a number of challenges. First, sketches and
photos are from inherently heterogeneous domains – sparse
black and white line drawings versus dense colour pixels.
Second, FG-SBIR requires representation of fine-grained
(dis)simila-rities of sketches and photos. However, different
people often have very different drawing styles and abilities
meaning that sketches come with varied levels of deforma-
tion and abstraction. This makes the instance-level matching
between sketches and photos a non-trivial problem. Specif-
ically, given a query sketch, there are often many visually
similar candidate photos in the gallery while the true match
may only differ subtly in some localised object parts with
other wrongmatches (as shown in Fig. 2a); on the other hand,
for a specific object, such as the shoe and chair in Fig. 2b, the
sketches drawn by different people could have very different
appearance due to the drastically different drawing styles,
varying levels of abstraction and the loss of colour and tex-
ture information in the sketch domain.

Last but not least, FG-SBIR is challenged by having only
scarce benchmarking datasets. A FG-SBIR dataset is harder
to obtain than a category-level one because each sketch
should have an instance-level corresponding photo. Impor-
tantly such dataset should capture sufficient variability of the
human drawing styles so that anymodel learned from the data
can have a chance to capture the large domain differences and
drawing style variability.

In this paper, these challenges are effectively addressed.
Specifically, to address the lack of data problem, we intro-
duce a large-scalefine-grainedSBIRdatabase, namedQMUL
FG-SBIR database. This database has a number of unique
characteristics that make it suitable for tackling the newly-
defined FG-SBIR problem: (1) It is large-scale, consisting of
4 datasets, including 3116 photos and 8721 sketches in total
belonging to twocategories (shoe andchair). (2) It is designed
carefully to reflect the challenges in real-world application
scenarios: multiple sketches are collected for each photo to
capture the drawing style variations, and the sketches are
collected using different input devices and from users with
different levels of familiarisation with SBIR. (3) Extensive
data annotation are provided: in addition to the sketch-photo
pairs, 32,220 human triplet annotations are obtained, which
provide valuable training data for learning the subtle differ-
ences between two similar photos to a given query sketch.

Existing FG-SBIR models focus primarily on closing the
semantic gap between the two domains whilst only par-
tially addressing or completely ignoring the challenge of
capturing instance-level discriminative features. Specifically,
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(a)

(b) (c)

Fig. 2 a An example of a query sketch with several visually similar
candidate photos; b human free-hand sketches have various abstraction
and deformation levels and are visually very different from the photo

images containing the same object instance—the bottom three sketches
were drawn by three people depicting the shoe in the same photo in the
top; c architecture of our proposed model

a FG-SBIR model, such as (Sangkloy et al. 2016) and the
previous version (Yu et al. 2016), adopts a multi-branch
deep convolutional neural networks (CNNs). Each domain
has a corresponding branch which consists of multiple con-
volutional/pooling layers followed by fully connected (FC)
layers. The final FC layer is used as input to pairwise verifica-
tion or triplet ranking losses to align the domains. However,
recent efforts (Gatys et al. 2015; Mahendran and Vedaldi
2015) on visualisingwhat each layer of aCNNactually learns
show that higher-layers of the network capture more abstract
semantic concepts but not fine-grained details, motivating
fine-grained recognitionmethods to work with convolutional
feature maps instead (Lin et al. 2015). After the FC layers,
the fine-grained detail is gone and cannot be recovered. Thus
existing deep FG-SBIR models are unable to tell apart visu-
ally similar photos based on subtle differences.

In this paper,we introduce spatial-semantic attentionmod-
elling in deep FG-SBIR to perform effective instance-level
matching of sketch and photo given the large domain gap
and variable sketch drawing styles. The architecture of the
proposedmodel is shown in Fig. 2c. Although it is still essen-
tially a multi-branch CNN, there are a number of crucial
differences to existing models. First, we introduce attention
modelling in each branch of the CNN so that computation
for representation learning is focused on specific discrimi-
native local regions rather than being spread evenly over the
whole image. Due to the large misalignment between the
sketch and photo domains, directly taking the attended fea-

ture map as input to the subsequent layers of the network is
too sensitive to misalignment. We thus introduce a shortcut
connection architecture (Szegedy et al. 2015; He et al. 2016)
to link the input directly to the output of the attention mod-
ule so that a noisy attention mask would not derail the deep
feature computation completely, resulting in robust attention
modelling. Second, we keep both coarse and fine semantic
details through another shortcut block to connect the attended
feature map with the final FC layer before feeding it to the
loss.

Our contributions are as follows: (1) For the first time,
the problem of fine-grained instance-level image retrieval
using free-hand sketches is defined and addressed. (2) We
contribute a large-scale fine-grained sketch database,QMUL
FG-SBIR, with extensive ground truth annotations, in the
hope that it will inspire research efforts on solving this chal-
lenging problem. (3) We propose a cross-domain attention
model for FG-SBIR, providing insights for this task. Exten-
sive experiments on the new dataset show that the proposed
model significantly outperforms the state-of-the-art alterna-
tives. We also demonstrate that the contributed dataset is
more suitable than the existing ones [e.g., Sketchy(Sangkloy
et al. 2016)] for studying the FG-SBIR problem.

2 RelatedWork

Category-level SBIR Most existing SBIR studies (Eitz et al.
2010, 2011; Hu et al. 2010; Cao et al. 2011, 2010; Wang
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et al. 2010; Hu et al. 2011; Lin et al. 2013; James et al. 2014;
Hu and Collomosse 2013; Bui et al. 2016; Liu et al. 2017a;
Bui et al. 2018; Zhang et al. 2018) focus on category-level
SBIR. In this task, a sketch is used to retrieve photos of
the same category. For example, given any sketch of a cat,
e.g., a cat face or a standing cat, any photo containing a cat
is deemed a match for it. (Bui et al. 2016, 2018) proposed
staged-training strategy and investigated different base net-
works for category-level SBIR. (Liu et al. 2017a) recently
introduced deep hashing into category-level SBIR, making
it practical for commercial applications by speeding up the
retrieval process on large-scale datasets. (Zhang et al. 2018)
further presented a generative hashingmodel which can learn
a mapping for sketches that the distribution is indistinguish-
able from that of photos using an adversarial loss. Although
they demonstrated the effectiveness of the proposed model
in both category-level and instance-level settings, the focus
of this work is still on efficiency.

Another similar task is sketch-based 3D shape retrieval,
like (Wang et al. 2015), which uses the sketch to retrieve
3D shapes. And (Collomosse et al. 2017) explored style-
constrained sketch search over a diverse domain of images
with different visual aesthetics. However, these related tasks
are also limited to category-level.

Fine-grained Instance-Level SBIR There is a smaller but
growing number of studies addressing the fine-grained
instance-level SBIR problem. However, the definitions of
what FG-SBIR entails differ from ours. The first recognis-
ably FG-SBIR problem was proposed in (Li et al. 2014).
Nevertheless, in this work a gallery photo is considered to
match a query sketch if the objects depicted are in a sim-
ilar arrangement, i.e. in the same pose and depicted with
similar viewpoint and zoom parameters. However, there is
no requirement for the photo to depict the same instance,
as is our focus. Fine-grained SBIR was studied in the con-
text of multiple categories in a concurrent work (Sangkloy
et al. 2016) with ours, which also introduced the first large-
scale FG-SBIR dataset called Sketchy. This work is thus
closely related, but it also has a number of vital differences.
Firstly, like (Li et al. 2014), pose and viewpoint are the
dominant cues for matching in the Sketchy dataset. Thus it
does not test amodel’s capability to differentiate fine-grained
instance-level details, which are more subtle and challeng-
ing to match across domains, and would underpin a practical
commercial application. Secondly, while retrieval among a
gallery of multiple categories is an interesting challenge, it
is not very relevant to a practical application: where a user
would more reasonably use conventional keyword tools to
specify the category and then perform FG-SBIR to find a
specific instance within that category. We perform detailed
analysis contrasting the nature of the Sketchy FG-SBIR task
and our instance-level FG-SBIR task in Sect. 5. Finally, the

FG-SBIR models proposed in (Sangkloy et al. 2016) have
a Heterogeneous network architecture, whilst in this study
we show that far superior performance can be obtained with
a Siamese architecture. Besides, a recent work (Radenovic
et al. 2018) whose focus is shape matching, shows that with
careful designing, a model that is trained on edge maps can
generalize well on sketches. However, it involves a series of
data pre-processing and hard mining, and the performance
still has a gap with our proposed method.

Other SBIR works like Sketch2Photo (Chen et al. 2009)
andAverageExplorer (Zhu et al. 2014), use sketch in addition
to text or colour cues for image retrieval. (Zhu et al. 2014)
further investigates an interactive process, in which each user
‘edit’ indicates the traits to focus on for refining retrieval. For
now,we focus on non-interactive black&white sketch-based
retrieval and leave these extensions to future work.

Another relevant task is instance-level image retrieval
which aims at retrieving all images that contain the same
object instance as the query image. Works like (Gordo et al.
2017; Radenović et al. 2018) achieve impressive perfor-
mance on landmark datasets such as Oxford 5k (Philbin et al.
2007) and Paris 6k (Philbin et al. 2008). Different from the
task studied in this work, instance-level image retrieval is
conducted among natural images. Therefore, the domain gap
between query and target images is not as significant as in
SBIR.

Fine-grained SBIR Datasets One of the key barriers to fine-
grained SBIR research is the lack of large-scale benchmark
datasets. There are free-hand sketch datasets designed for
sketch recognition, the most commonly used being the TU-
Berlin 20,000 sketch dataset (Eitz et al. 2012); there are also
many photo datasets such as PASCAL VOC (Everingham
et al. 2010) and ImageNet (Deng et al. 2009). Therefore, with
few exceptions (Eitz et al. 2011; Hu and Collomosse 2013),
most existing SBIR benchmarks were created by combining
overlapping categories of sketches and photos from exist-
ing databases, which means that only category-level SBIR
is possible. The fine-grained dataset contributed in (Li et al.
2014) was created by selecting similar-looking sketch-photo
pairs from theTU-Berlin andPascalVOCdatasets, thuswith-
out the guarantee that those pairs contain the same object
instances. For each of 14 categories, there are 6 sketches
and 60 images—much smaller than ours, and too small to
apply state-of-the-art deep learning techniques. For specific
domains such as face, large-scale datasets exist such as the
CUHK Face Sketches (Wang and Tang 2009). However,
those forensic sketches were drawn by trained artists rather
than the general public with variable drawing abilities.

The only existing SBIR dataset to our knowledge is the
Sketchy dataset proposed in the concurrent work (Sangk-
loy et al. 2016), which is larger than ours including 74,425
sketches and 12,500 gallery photos spanning 125 categories
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collected from social media sites such as Flickr. In each cat-
egory, there are 100 object instances, and each instance has
1 photo and 5 or more corresponding sketches. Compared
to our QMUL FG-SBIR database, there are several key dif-
ferences: (i) Sketchy involves multiple object categories. As
mentioned early, this does not reflect the real-world applica-
tion scenarios where the object category is given. Obviously
it could be re-purposed for within-category SBIR. However,
in that case the number of object instances per-class (100) is
too small (the largest dataset in our database contains 2000
instances). (ii) It includes many categories not appropriate
for FG-SBIR, like pizza, banana and pear etc. Instances in
such categories can only be distinguished by colour or texture
information, which cannot or hardly be reflected in sketches.
(iii) Pose is a dominant factor for distinguishing instances of
many categories. For example, for most animal classes, such
as cat, bat and cow, the most distinct feature of an instance is
its pose, particularly given the small instances numbers. Thus
FG-SBIR essentially degenerates to a pose detection task for
these categories. In contrast, in our database all photos are
from online shopping websites where pose and background
are most often identical, forcing the FG-SBIR models to
focus on detecting subtle fine-grained intrinsic visual prop-
erties (e.g., having a higher heel or an additional buckle for a
shoe) for matching. More detailed analysis with visual illus-
trations on the differences between Sketchy and the proposed
FB-SBIR database can be found in Sect. 5.6.

Attention modelling Visual attention models have been
studied extensively in a wide range of vision problems
including image caption generation (Xu et al. 2015; Lu
et al. 2016), VQA (Fukui et al. 2016; Nam et al. 2016),
image classification (Mnih et al. 2014; Sermanet et al. 2014;
Xiao et al. 2015) and particularly fine-grained image recog-
nition (Sermanet et al. 2014; Xiao et al. 2015). Various
types of attention models exist. Soft attention is the most
commonly used one because it is differentiable thus can
be learned end-to-end with the rest of the network. Most
soft-attention models learn an attention mask which assigns
different weights to different regions of an image. Alterna-
tively, the spatial transformer network (Jaderberg et al. 2015)
generates an affine transformation matrix which locates the
discriminative region. Different from soft attention, hard
attention models only indicate one region at each time. A
hard attention model is not differentiable so it is typically
learned using reinforcement learning. Beyond the soft- and
hard-attention models which are developed based on convo-
lutional neural networks, (Vaswani et al. 2017) introduces
a novel architecture, Transformer, which solely based on
attention mechanism but does not involve convolutions. It
is brought up for language translation. Interestingly, there is
no prior SBIR (both category-level and instance-level) work
thatmodels attention, perhaps because conventional attention

models deployed in a cross-domain match problem assume
pixel-level alignment; they thus become ineffectivewhen this
assumption is invalid as in the case of SBIR. Our attention
model is specifically designed for FG-SBIR in that it is robust
against spatial misalignment through the shortcut connection
architecture.

Shortcuts and layer fusion in deep learning The short-
cut architecture used in both the attention module and the
coarse-fine fusion block in our model serves to fuse multi-
ple layers at different depths. Fusing different CNN layers in
the model output has been exploited in many problems such
as edge detection [e.g., (Ren 2008; Xie and Tu 2015)], pose
estimation [e.g., (Newell et al. 2016)] and scene classifica-
tion [e.g., (Gong et al. 2014; Yang and Ramanan 2015; Liu
et al. 2017b)]. Themotivation is typically multi-scale (coarse
to fine) fusion rather than attended-unattended feature map
fusion, as in our first shortcut block.

Various shortcut connection architectures have been suc-
cessfully deployed in a number of widely used CNNs
including GoogLeNet (Szegedy et al. 2015) and ResNet (He
et al. 2016). Our shortcut connection architecture is similar
to that of the residual block in ResNet (He et al. 2016). How-
ever, instead of making the network deeper, we use it in the
attention module to make the attention module output robust
against noisy attention mask caused by cross-domain feature
misalignment, as well as in the final CNN output layer to pre-
serve both coarse and fine-grained information in the learned
representation.

A preliminary version of this work was published in
(Yu et al. 2016; Song et al. 2017). Compared with the ear-
lier studies, there are several key differences: (i) This work
contributes a much bigger fine-grained SBIR dataset, includ-
ing two collection settings, reflecting different application
scenarios. (ii) The proposed triplet ranking model with a
different base network andmodified pre-training strategy sig-
nificantly outperforms the model in (Yu et al. 2016; Song
et al. 2017) on our new dataset. (iii) A detailed comparison
between our new dataset and the existing one, i.e., Sketchy
is conducted to provide more insights in this task.

3 The QMUL FG-SBIR Database

3.1 Overview

Our QMUL FG-SBIR database consists of 3116 photos and
8721 sketches belonging to two categories (shoes and chairs).
Each category has two datasets giving a total of four datasets.
For a given category, the two datasets are collected under dif-
ferent settings to reflect different people’s drawing abilities
and styles as well the drawing devices typically used in a
real-world application.
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Fig. 3 Example sketch-photo pairs in QMUL FG-SBIR database. Top:
V1, Bottom: V2. Each photo in V1 has one corresponding sketch while
photos in V2 have 3 or more corresponding sketches drawn by different
persons. It is clear to see that (i) human sketches are abstract and iconic in
nature, (ii) drawing abilities and styles are different among participants

More specifically, the first setting (V1) is in-house col-
lection in a controlled environment, where all volunteers
were students familiar with SBIR, and sketched on our pro-
vided tablets. The second setting (V2) is uncontrolled under
which sketches were collected on Amazon Mechanical Turk
(AMT). On this platform, diverse workers used various input
devices resulting in a much greater diversity of sketches, and
we purposefully recorded multiple (3+) sketches from dif-
ferent workers per object instance to reflect such drawing
diversity.

We denote the shoes/chairs collected under the first setting
as Shoe/Chair-v1 and the latter as Shoe-v2 and Chair-v2.
Figure 3 shows the example sketches and photos of V1 and
V2. Note that the V1 datasets are exactly those introduced in
the preliminary version of this work (Yu et al. 2016) and used
in (Song et al. 2017). Generally, sketches in V1 are visually
better (more detailed and truthfully reflective of the subtle
details in the corresponding photos) than those in V2. This
is due to the controlled input device and greater familiarity
of volunteers with SBIR. V1 thus simulates a future scenario
where people have got used to drawing on touch-screens,
while V2 is more representative of the contemporary general
public. A detailed comparison of the four datasets is listed in
Table 1.

3.2 Data Collection

Collecting Photo Images Because our database is designed
for instance-level retrieval, the photo images should cover
the instance-level variability of the visual appearance of the
corresponding object category. To this end, for Shoe-v1, we
selected 419 representative photo images from UT-Zap50K
(Yu and Grauman 2014) representative shoes of different
types including boots, high-heels, ballerinas, formal and
informal shoes.While for Shoe-v2,we exhaustively collected
the photos from the largest shoes on-line shop in the UK,
OFFICE (http://www.office.co.uk/). We filtered out the shoes

Table 1 Comparison of V1 (Shoe/Chair-v1) and V2 (Shoe/Chair-v2)
datasets

Items V1 V2

#Photos 419/297 2000/ 400

#Sketches 419/297 6730/1275

#Volunteers 82 599

Devices Tablets Tablets, smartphones, mouse

with the same style but different colours because sketches
in this work do not contain colour information. The final
selection consists of 2,000 shoe photos. For Chair-v1, we
searched three on-line shopping websites, including IKEA,
Amazon and Taobao, and selected 297 chair product photos
of varying types and styles. We collected another 400 pho-
tos from several furniture websites, including Argos (http://
www.argos.co.uk/) and MADE (http://www.made.com/) for
Chair-v2. Note that the photo images of V1 and V2 are col-
lected from different websites, thus they are mostly disjoint.
To further remove duplicated photos with the same object,
we extracted image features from photos of V1 and prelimi-
nary V2 (pre-V2) using AlexNet, and searched for the top-10
nearest neighbors from pre-V2 for each photo of V1. Then
we manually checked and removed the duplicated photos.
Collecting Sketches The second step is to use the collected
photo images to generate corresponding sketches.

Shoe/Chair-v1: The sketches of V1 are collected in a
controlled environment. 22 out of 82 recruited volunteers
are assigned to sketch the images and the rest 60 for
data annotation (to be detailed later). We showed one
shoe/chair image to a volunteer on a tablet for 15 seconds,
then displayed a blank canvas and let the volunteer sketch
the object he/she just saw using his/her fingers on the
tablet. None of the volunteers has any art training but
they are familiar with the sketch collection process. Each
photo has one corresponding sketch, so there are 419 and
297 sketches for shoes and chairs respectively.
Shoe/Chair-v2: We collected sketches from AMT for
V2. We showed one shoe/chair photo to a worker for
5 seconds, then the photo disappeared and the worker
needed to sketch the object on a blank canvas. Theworker
can re-check the photo formultiple times but the canvas is
cleared after reviewing the photo. Because people have
different drawing abilities and styles, the same object
would be depicted differently by different sketchers. To
explore this, we collected 3 or more sketches for each
photo from different workers. Finally, we collected 6730
and 1275 sketches for shoes and chairs, respectively from
599 workers. In addition, we recorded the worker-ID and
the stroke-level temporal information (Yu et al. 2015) of
collected sketches for future study.
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3.3 Data Annotation

The data will be used to train a FG-SBIR model that is
able to find the most similar photos to a query sketch. The
photo-sketch pair correspondence already provides some
annotation that could be used to train a pairwise verifica-
tion model (Chopra et al. 2005). However, for fine-grained
analysis it may be possible to learn a stronger model by using
a ranking-based loss, provided that we have detailed annota-
tion of the similarity ranking of candidate photoswith respect
to a given query sketch. To explore whether this denser but
more subjective and noisy annotation improves performance,
we also collect annotations in the form of human similarity
judgments. Given limited resources, we only collected such
annotations for V1 datasets. For V2 datasets, we always used
the true match as positive while the rest as negative when
training a ranking-loss based model.

Ranking annotation for FG-SBIR is not straightforward.
Asking a human annotator to rank all 419 shoe photos given
a query shoe sketch would be an error-prone task. This is
because humans are bad at list ranking, especially given
the factor that many shoes look very alike; but they are
better at individual forced choice judgments or pairwise rank-
ing which has been employed in (Gygli et al. 2013; Jiang
et al. 2013). Therefore, instead of requiring a global ranking
annotation, a much more manageable triplet ranking task is
designed for the annotators. Specifically, each triplet consists
of one query sketch and two candidate photos. The task is to
determine which of the two candidate photos is more simi-
lar to the query sketch. Exhaustively annotating all possible
triplets is also out of the question due to the extremely large
number of possible triplets.We therefore selected only a sub-
set of the triplets and obtained the annotations through the
following three steps:

1. Attribute Annotation: We first defined an ontology of
attributes for shoes and chairs based on the existing UT-
Zap50K attributes (Yu and Grauman 2014) and product
tags on on-line shopping websites. We selected 21 and
15 binary attributes for shoes and chairs respectively. 60
volunteers annotated all 1,432 images (i.e., both sketches
and photos) with ground-truth attribute vectors. All these
attribute annotations will be provided in our database.

2. Generating Candidate Photos for Each Sketch: Next
we selected 10 most-similar candidate images for each
sketch in order to focus our limited amount of gold-
standard fine-grained annotation effort. In particular, we
combined the attribute vector with a deep feature vec-
tor (the fc7 layer features extracted using Sketch-a-Net
(Yu et al. 2015)) and computed the Euclidean distance
between each sketch and image. For each query sketch,
we took the top 10 closest photo images to the query
sketch as candidates for annotation.

3. Triplet Annotation: To provide triplet annotations for
the (419+ 297) · 10 · 9/2 = 32, 220 triplets generated in
the previous step, each volunteer was presented with one
sketch and two photos at a time. They were then asked
to indicate which photo is more similar to the sketch.
Each sketch has 10 · 9/2 = 45 triplets and three people
annotated each triplet. We merged the three annotations
by majority voting to clean up some human errors.

4 Methodology

4.1 Overview

The architecture of the proposed model is illustrated in
Fig. 2c. It is a Siamese network with three CNNs, taking
a query sketch, a positive photo and a negative photo as
the input respectively. The positive-negative relation can be
defined by the matching relationship, e.g., if the true match
photo is the positive, any false match can be used as the
negative. Alternatively, if the sketches and photos are anno-
tated explicitly by similarity, relative similarity ordering can
be used as supervision information. The CNNs extract deep
features from the three input images and feed them to a triplet
ranking loss to enforce the ranking order (positive should be
closer to the query than the negative using the extracted fea-
ture). Specifically, for a given triplet t = (s, p+, p−), its loss
is defined as:

Lt =max(0,Δ+D( fθ (s), fθ (p
+))−D( fθ (s), fθ (p

−)))

(1)

where Δ is a margin between the positive-query distance
and negative-query distance. If the two photos are ranked
correctlywith amargin of distanceΔ, then this triplet will not
be penalised. Otherwise the loss is a convex approximation of
the 0−1 ranking loss which measures the degree of violation
of the desired ranking order specified by the triplet.

After the training, themodel canbeused to do the instance-
level SBIR in the inference stage. For a given query sketch s
and a set of M candidate photos

{
p j

}M
j=1 ∈ P , we construct

the ranking score as:

R(s, p j ) = −D
(
fθ (s), fθ (p j )

)
(2)

where R(s, p j ) denotes the ranking score between the query
sketch and the candidate photo. fθ (s) and fθ (p j ) are the
learned feature embedding. D(·, ·) is the same distance func-
tion used in the training stage, i.e., Euclidean distance. Note
that the features should be normalized before computing the
distance. Given a query sketch, the candidate photo in the
gallery with the highest ranking score will be retrieved as the
most similar photo.
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The proposed spatial-semantic attention model has two
key components: (1) a residual attention module and (2)
coarse-fine feature fusion. Compared with the preliminary
version (Song et al. 2017), the CNN base net is changed to
InceptionV3 as its performance in sketch recognition reaches
80.23%, which surpasses previous state-of-the-art. In addi-
tion, we simplified the data preprocessing step by using RGB
photos as input instead of edge maps extracted from pho-
tos. This is because InceptionV3 can effectively model both
sketches and photos, and this also facilitates the usage of
existing datasets for pre-training, which will be detailed in
Sect. 4.4.

4.2 AttentionModelling

A soft attention paradigm is adopted. Given a feature map
computed at any convolutional layer of a CNN, a soft atten-
tion module will take it as input and generate an attention
mask. This mask is then used to re-weight the input feature
map to get an attended feature map which is fed into the next
layer of the network. In our model, the attention module is
added to the output of layer Mixed_7b of the CNN in each
branch (orange boxes in Fig. 2c).

We denote the input feature map as f ∈ R
H×W×C where

H and W are the filter map size and C is the number of
feature channels. For the feature vector fi, j ∈ R

C of the
feature map at the spatial location (i, j), we can calculate its
corresponding attention score si, j by

si, j = Fatt ( fi, j ;Wa), αi, j = so f tmax(si, j ), (3)

where Fatt (·) is themapping function learned by the attention
module and Wa are the weights/parameters of the attention
module. The final attention mask = [αi, j ] is a probabil-
ity map obtained by normalising the score matrix s = [si, j ]
using softmax. In our model, the attention module is a net-
work consisting of two convolutional layers with kernel
size 1. However, it can be replaced with any network. The
attended feature map fatt = [ f atti, j ] is computed by element-
wise product (denoted by ‘�’) of the attention mask and the
input feature map

f atti, j = αi, j � fi, j . (4)

In our implementation, the attended feature map will be
fed into the subsequent layer. However, due to the severe
spatial misalignment of the query photo and either the pos-
itive or the negative photo, the attention mask will be very
noisy and the resultant attended feature map fatt could be
(a) corrupted by noise, and (b) lose any useful information
in the original feature map f . To overcome this problem, we
introduce a shortcut connection architecture to link the input
of the attention network directly to its output and combine

them with an element-wise sum. The final attended feature
map with shortcut connection is thus computed as

fatts = f + α � f, (5)

where ‘+’ is element-wise sum. In this way, both the origi-
nal feature map and the attended but noisy feature map are
combined and used as input to the next layer of the network.

4.3 Coarse-Fine Fusion

Although the final attended featuremap fatts is spatially aware
and attentive to fine-grained details, these tend to be lost
going through multiple subsequent fully connected layers,
defeating the purpose of introducing attention modelling. To
keep both the coarse and fine-grained information, a shortcut
connection architecture is again employed here. Specifically,
we fuse the attended feature map fatts with the output of the
final layer (Mixed_7c) fMixed_7c to form the final feature
representation f f inal before it is fed into the loss layer. A
simple concatenation operation is used to fuse the two fea-
tures. Before the fusion, we first reduce the dimension of the
attended feature from 2,048D to 512D via a 1 × 1 convolu-
tional layer and then do global average pooling (GAP).

4.4 Training Strategy

Preprocessing for Photo Branch There is still no consen-
sus on whether we should use extracted edge map or the
original RGB photo as the input representation for the photo
branch. Some works (Li et al. 2014; Yu et al. 2016) sug-
gest that processing photos to edges can reduce the domain
gap between sketch and photo domains, thus alleviating the
burden of aligning the two domains. In contrast, some other
works (Sangkloy et al. 2016) argue that some information
is lost in the edge map extraction process which could be
useful but can never be recovered; they thus advocate no pre-
processing of the photo input. We also select the original
photo as the input rather than the detected edge map since
the original photo contains more detailed information.

Pretraining Strategy Given the limited amount of train-
ing data, and the fine-grained nature of the instance-level
SBIR task, training a good deep ranker is extremely chal-
lenging. In practice, it requires carefully designing of the
training strategy (Yu et al. 2016; Sangkloy et al. 2016).
As our base network is pretrained for the ImageNet-1K
object category classification task, it is already suitable for
category-level recognition. Turning attention to the goal of
FG-SBIR, we initialise our three branch triplet network with
three ImageNet-1K pre-trained InceptionV3 and then further
pretrain it on Sketchy database which has a Hybrid category-
instance SBIR task, thus getting closer to our final single
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Table 2 The training/testing
splits of QMUL FG-SBIR and
Sketchy databases

Item Sketchy QMUL FG-SBIR

Shoe-v1 Chair-v1 Shoe-v2 Chair-v2

# Photos 12,500 419 297 2000 400

# Sketches 74,425 419 297 6730 1275

# Categories 125 1 1 1 1

# Triplet annotations – 32,220 –

# Skeches per photo 5+ 1 3+

# Sketches/Photos (train) 65,064/11,250 304/304 200/200 6051/1800 951/300

# per-category ∼520/90 304/304 200/200 6051/1800 951/300

# Sketches/Photos (test) 6312/1250 115/115 97/97 679/200 324/100

# per-category ∼50/10 115/115 97/97 679/200 324/100

category SBIR task. While training on Sketchy, both cate-
gory classification and triplet loss are applied since there are
125 categories in the dataset. The classification loss ensures
category separability. We generate triplets within each class:
For each triplet, the positive is the true match photo for
the anchor sketch while the negative is randomly selected
from the other photos of the same class. The Sketchy pre-
trained model can be used for fine-grained instance-level
retrieval directly: We will show that it does generalise to our
fine-grained datasets. However, it is advantageous to further
fine-tune the triplet model specifically for the target category.
In our case, this means that the Sketchy pre-trained model
is finally fine-tuned on the training split of our contributed
QMUL FG-SBIR database.

5 Experiments and Results

5.1 Datasets

Three datasets are used in our experiments: (i) QMUL FG-
SBIR database is our newly collected database, consisting
of 4 datasets spanning 2 classes (shoes and chairs). There are
419 and 297 sketch-photo pairs in Shoe-v1 andChair-v1; and
2000 photos and 6730 sketches in Shoe-v2, and 400 photos
and 1275 sketches in Chair-v2. The detailed training/testing
split is listed in Table 2. (ii) The QMUL Handbag dataset
was introduced in the earlier version of this work (Song et al.
2017). It contains 568 sketch/photo pairs, and was collected
to make the retrieval task more challenging, since handbags
may exhibit more complex visual patterns and shapes than
shoes and chairs. Note that we did not expand this hand-
bag dataset due to limited resources. (iii) Sketchy data-base
(Sangkloy et al. 2016) is the largest existing SBIR database,
including 74,425 sketches and 12,500 gallery photos span-
ning 125 categories. In each category, there are 100 photos
and 5 or more corresponding sketches for each photo. In

Sect. 5.6, a detailed comparison between Sketchy and our
dataset is provided to show their differences. In our experi-
ments, this dataset is used for pre-training.

5.2 Implementation Details

Our method is implemented on the Tensorflow platform.
Adam optimiser is applied to optimise the loss function. The
initial learning rate is set to 0.0001 and the batch size is 16.
The marginΔ (see Eq. 1) is set to be 0.3. During training, we
do random cropping and flipping for data augmentation. Ima-
geNet followed by Sketchy provide pre-training for QMUL
FG-SBIR. Human triplet annotations are used as supervi-
sion when training on the Shoe-v1 and Chair-v1. For the
others for which no triplet annotations are available, given a
sketch, the true-match photo is used as positive while the rest
as negative. We implemented two models, one is the basic
model without employing attention module while the other
does (i.e., our full model). Similar to (Song et al. 2017), the
attentionmodule in the full model consists of 2 convolutional
layers, both with kernel size 1 × 1. The dimension of f f inal

is 2,560D.

Multi-view Testing: Similar to the multi-view testing
procedure used in (Krizhevsky et al. 2012) for the image
classification task,we also usemulti-view testing for fine-
grainedSBIR. In details,wefirst crop patches sized 224×
224 located on left-upper, left-down, right-upper, right-
down and center of a given query sketch image, as well
as their horizontal reflections. We then apply the trained
model to extract features for each version of the query,
calculate the ranking score between the corresponding
patches in the gallery photo images, and then calculate the
average score for evaluation of the retrieval performance.
Evaluation Metrics: For performance evaluation, the
retrieval accuracy of the true-match photo for a given
query sketch is used. We quantify this by computing
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the cumulative matching accuracy at various ranks—so
acc.@K is the percentage of sketches whose true-match
photos are ranked in the top K retrieval results. This is
the most commonly used evaluation metric for image
retrieval tasks, corresponding to an application scenario
where the goal is simply to find a specific item/image as
quickly as possible without requiring the user to browse
pages after pages of retrieved candidate images.

5.3 Competitors

We compare our proposedmethod (Sect. 4) with several pop-
ular shallow and deep baselines.

Shallow Baselines The venerable HOG feature is a standard
feature that has long been applied to sketch-recognition (Li
et al. 2015) and SBIR (Li et al. 2014; Hu and Collomosse
2013). We first extracted HOG feature from image patches,
then directly concatenate the image’s HOG features to form
the dense HOG feature (576D). After that, we feed the dense
HOG feature to train a rankSVM as in (Prosser et al. 2010)
(denoted as Dense-HOG+rankSVM).

Deep Baselines Two groups of deep baselines are consid-
ered. In the first group, we extract deep feature using the
deep Sketch-a-Net model (Yu et al. 2017) and InceptionV3
(Szegedy et al. 2016a). We then follow the same RankSVM
pipeline to train a retrieval model (ISN Deep+RankSVM
and InceptionV3+rankSVM). Furthermore, a recent method
(Li et al. 2017) is also compared which further aligns
the GoogleNet extracted features across the two domains
with fine-grained subspace learning (Triplet GoogleNet
+Subspace). In the second group, FG-SBIR models are
learned end-to-end. Triplet SN and Triplet Att. SN are pro-
posed in the earlier version of this work (Yu et al. 2016; Song
et al. 2017). Similar to our model, Triplet SN also adopts
a three-branch Siamese network architecture with a triplet
ranking loss, and Triplet Att.SN adds an attention module
and an HOLEF loss to improve the performance further. The
newly proposed model differs from these two mainly in two
aspects: (1) The base network in each branch is Sketch-a-Net
(Yu et al. 2015) which is purposely built for sketch analy-
sis whilst the general-purpose InceptionV3 (Szegedy et al.
2016b) is employed in our model. (2) The input for the photo
branch is edge map extracted from the original photo whilst
no such pre-processing step is taken in our model. On the
Sketchy database, we also include the model presented in
(Sangkloy et al. 2016) (Triplet GoogleNet) for comparison.
This model uses a heterogeneous architecture with triplet
ranking loss and is shown to be the best performing model
among a number of variants on Sketchy in (Sangkloy et al.
2016). Two of those variants in (Sangkloy et al. 2016) that
use pairwise losses are compared in our experiments.

Human Baselines In order to give an intuition about how
challenging the FG-SBIR task is, we also collect data on
human performance for each of our new databases. For each
query sketch, the participants browsed all the gallery pho-
tos and selected the most similar one as the human retrieval
result. We provided a two-stage selection procedure to help
humans to perform this task more accurately. The partici-
pants can select multiple putative matching photos at the first
round, and then focus onmaking a decision among these sim-
ilar photos in the second round. We also include the human
baseline on the Sketchy database, as reported in (Sangkloy
et al. 2016).

5.4 Comparisons Against State-of-the-Art

Table 3 shows the performance of our proposed models on
QMULFG-SBIR dataset and the handbag dataset against the
baselines.Wemake the followingobservations: (i)Ourmodel
achieves the highest accuracy at acc.@1 and acc.@10, often
significantly outperforming the second best model. Espe-
cially on Chair-V2, the proposed model surpasses human
performance by a noticeable margin. (ii) Dense-HOG out-
performs the deep feature extracted from Sketch-a-Net, i.e.,
ISN Deep, on all datasets. This can be explained by that
the sketches and photos on our contributed datasets are pose
aligned. But when the general-purpose InceptionV3 is used,
the handcrafted features fare much worse. (iii) End-to-end
learned models are in general stronger compared with mod-
els with separate feature extraction and retrieval modelling
steps. (iv)We also compare with the results of (Radenovic
et al. 2018) on Shoe/Chair-v1. The focus of (Radenovic et al.
2018) is shape matching, but it also conducts experiments
on fine-grained SBIR and achieves impressive performance.
However, ours still outperforms theirs by a noticeable mar-
gin.

Next, we conduct ablation studies on QMUL Shoe-v2 and
Chair-v2 datasets.

5.5 Ablation Study

Contributions of Each Component We have introduced two
novel components in our model: a residual attention mod-
ule being robust to spatial misalignment and the coarse-fine
fusion (CFF2) to combine the attended convolutional feature
map with the final layer output. In order to evaluate the con-
tributions of each component, we compare our full model
(Full) with three stripped-down versions: baseline model
with residual attention module only (Base+attention), base-

2 Here ‘CFF’ refers to the operation of combining the feature map
extracted from an earlier layer with the final layer output. This is dif-
ferent with the meaning in the preliminary version (Song et al. 2017)
where it indicates both feature fusion and residual attention module.
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Table 3 Comparative results
against baselines

Dataset Method Acc.@1 Acc.@10

QMUL Shoe-v1 Dense-HOG + rankSVM 23.48% 73.91%

ISN Deep + rankSVM 20.00% 62.61%

InceptionV3 + rankSVM 48.70% 91.30%

Triplet SN (Yu et al. 2016)∗ 52.17 % 92.17 %

Triplet Att. SN (Song et al. 2017) 61.74 % 94.78 %

DSM (with whitening) (Radenovic et al. 2018) 54.8% 92.2%

Our model 66.09% 94.78%

Human 76.52% –

QMUL Chair-v1 Dense-HOG + rankSVM 59.79% 96.90%

ISN Deep + rankSVM 47.42% 82.47%

InceptionV3 + rankSVM 83.50% 100.00%

Triplet SN (Yu et al. 2016)∗ 72.16 % 98.96 %

Triplet Att. SN (Song et al. 2017) 81.44 % 95.88 %

DSM (with whitening) (Radenovic et al. 2018) 85.6% 97.9%

Our model 91.75% 100.0%

Human 94.85% –

QMUL Handbag Dense-HOG + rankSVM 15.5% 40.48%

ISN Deep + rankSVM 9.5% 44.1%

InceptionV3 + rankSVM 28.6% 75.0%

Triplet SN (Yu et al. 2016)∗ 39.9 % 82.1 %

Triplet Att. SN (Song et al. 2017) 49.4 % 82.7 %

DSM (with whitening) (Radenovic et al. 2018) 51.2% 85.7%

Our model 61.90% 89.29%

Human 50% –

QMUL Shoe-v2 Dense-HOG + rankSVM 11.63% 48.01%

ISN Deep + rankSVM 7.21% 34.02%

InceptionV3 + rankSVM 30.78% 78.35%

Triplet SN (Yu et al. 2016)∗ 30.93% 72.02%

Triplet Att. SN (Song et al. 2017) – –

Our model 42.27% 82.18%

Human 49.50% –

QMUL Chair-v2 Dense-HOG + rankSVM 29.32% 75.31%

ISN Deep + rankSVM 11.73% 57.40%

InceptionV3 + rankSVM 48.15% 86.73%

Triplet SN (Yu et al. 2016)∗ 45.06% 86.42%

Triplet Att. SN (Song et al. 2017) – –

Our model 69.14% 97.22%

Human 63.00% –

Best results are highlighted in bold
‘*’ The results of Triplet SN (Yu et al. 2016) are the updated ones which are higher than the published ones
due to parameter retuning. The other baseline results are copied from (Song et al. 2017) and (Radenovic et al.
2018)

linemodelwith coarse-fine fusion (Base+CFF), and baseline
without either (Base), i.e., a triplet ranking model whose
base net is InceptionV3. Table 4 shows that the fusion com-
ponent can bring noticeable improvement while combining
two proposed elements, i.e., our final model, can achieve the

best performance. An interesting thing is the proposed atten-
tion module can hurt the performance when working solely.
This can be explained by random sampling strategy used in
our experiments may result in candidate photos look very
different from query sketches, as a result, it is hard for the

123



International Journal of Computer Vision (2021) 129:484–500 495

Table 4 Contributions of the different components

QMUL Shoe-V2 acc.@1 acc.@10

Base 36.08% 81.15%

Base + attention 31.37% 65.10%

Base + CFF 38.59% 82.92%

Full (our model) 42.27% 82.18%

QMUL Chair-V2 acc.@1 acc.@10

Base 57.41% 91.36%

Base + attention 57.10% 88.58%

Base + CFF 65.12% 94.75%

Full (our model) 69.14% 97.22%

Best results are highlighted in bold

Table 5 Comparison of using edge map and original photo as input to
the photo branch of our model

QMUL Shoe-V2 acc.@1 acc.@10

edge map 35.20% 77.47%

RGB photo (ours) 42.27% 82.18%

QMUL Chair-V2 acc.@1 acc.@10

edge map 60.49% 95.99%

RGB photo (ours) 69.14% 97.22%

Best results are highlighted in bold

Fig. 4 Example photos and sketches of our QMUL FG-SBIR database
and the Sketchy database. The upper part compares the shoes/chairs
photos/sketches from these two databases. The bottom part shows some
examples from the Sketchy database

attention module to learn a reliable attention mask. How-
ever, when working with our proposed fusion module, the
attention module can be more effective because of the deep
supervision introduced by the shortcut connection.

Effect of Training Strategy One of the key training strategy
decision to make for FG-SBIR is whether to use the raw
RGB photo image as input or its edge map in the hope that
it can narrow the domain gap between sketch and photo.
The former is adopted in our model. In this experiment, we
investigate whether the edge-map extraction preprocessing
step is necessary. Table 5 compares the performance of our
model when the photo input is an edge map extracted using
the edge detection method in (Zitnick et al. 2014) or RGB
photo respectively. From the results, we can see that RGB
photo always outperforms the corresponding edge map. This
can not only simplify the data preprocessing but also make
the model robust to photos with clustered background where
edge maps cannot handle well.

5.6 Comparison of QMUL and Sketchy Databases

BothourQMULFG-SBIRdatabase and theSketchydatabase
are proposed for fine-grained image retrieval task. How-
ever, there are some vital differences (see Fig. 4). Firstly,
our database was designed based on our model rigorous
definition of FG-SBIR: it is a task for within-category
instance-level photo retrieval using sketch as query. Con-
sequently, each dataset in QMUL FG-SBIR only contains
instances of the same category. Furthermore, the photos
and sketches are well-aligned in terms of pose and view-
point; thus the differentiating features of each shoe/chair is
indeed identity (instance) related cues. In contrast, Sketchy
is a multi-category dataset, so the model must perform
both categorisation and instance recognition. Importantly,
the instances in each category are also different in pose
or viewpoints. As a result, pose or viewpoint becomes the
key factor to distinguish photos and in many cases it shifts
the task to a pose recognition task. As mentioned earlier,
both category recognition and pose/viewpoint recognition
are unnecessary in a real-world FG-SBIR application sce-
nario.

Secondly, the instances within different categories in
Sketchy exhibit varied levels of fine-grained recognisability.
Some categories have distinct category-level characteristics
(that makes them easy to recognise) but the intra-class differ-
ences are indistinguishable in sketch. For example, the pear
category is included in Sketchy despite it is clearly unsuit-
able for instance recognition: distinguishing different pears
is extremely difficult with photos and is impossible with
sketches. Other categories may be relatively ambiguous at
category-level, but their intra-class variation is large, making
FG-SBIR relatively easy (e.g., across/within different animal
categories).

Quantitative Results on Sketchy Dataset To demonstrate
the difference between these two datasets further, we train
a FG-SBIR model on Sketchy to show some quantitative
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Table 6 Comparative results
against baselines on Sketchy

Dataset Method Acc.@1 Acc.@10

Sketchy Triplet GoogleNet + Subspace(Li et al. 2017) 45.27% 98.20%

Triplet GoogleNet (Sangkloy et al. 2016) 37.10% –

Pairwise GoogleNet (Sangkloy et al. 2016) 27.36% –

Pairwise AlexNet (Sangkloy et al. 2016) 21.36% –

Triplet SN (Yu et al. 2016) 21.63% 67.60%

Base 59.55% 96.56%

Full (our model) 57.98% 97.54%

Human (Sangkloy et al. 2016) 54.27% –

Best results are highlighted in bold

results. FG-SBIR on Sketchy involves two tasks, includ-
ing the category-level classification and instance-level image
matching. We first retrain our proposed model (Sect. 4),
i.e., the cross-domain attention model, plus a classification
branch. Specifically, a classification layer is added on top of
the final layer (Mixed_7c) of each branch, which accepts a
feature vector (output of the last layer after global average
pooling) as input. ImageNet provides data for model pre-
training for Sketchy and the margin Δ is set as 0.1. The
results are reported in Table 6. As we can see, the result of
our proposed fullmodel is slightly lower thanBasemodel but
significantly outperforms other baselines. This indicates that
the retrieval task on Sketchy dataset is not affected much
by the local attended parts, which verifies our assumption
that the difference among different object instances lies in
pose or orientation rather than identity related cues. Besides,
in our experiments, we found the classification accuracy
will decrease if we feed the same feature into the clas-
sification layer as for retrieval task, suggesting the local
attended feature is not suitable for category-level classifi-
cation. However, although the feature representations used
for classification and retrieval task are different, i.e., fused
feature for retrieval and final-layer output for classification,
the proposed attention module harms classification accu-
racy.

Figures 5 and 6 show some retrieval results on our
fine-grained datasets, the handbag dataset, and the Sketchy
database respectively. It is clear to see that the proposed
model can capture not only the holistic feature, like shape
and posture, but also the pose-independent fine-details such
as the buckle on a shoe or the pattern on the back of a
chair.

6 Conclusion and FutureWorks

Wehave provided a rigorous definition of the FG-SBIR prob-
lem, elucidated its value, and contributed the largest single-
category instance-level FG-SBIRbenchmark.Throughdetailed
evaluation of architectural choices, we have proposed a
model that surpasses the state-of-the-art on all FG-SBIR
benchmarks. A number of directions are worth further study.
First, as shown in the Fig. 5, sketch has weaknesses as an
inputmodality: It does not naturally reflect texture and colour
information. Secondly, although sketches straightforwardly
capture pose, position and shape, there is still large defor-
mation, especially for deformable objects with complicated
shape such as animals.

Given these weaknesses, the future FG-SBIRwork should
integrate the colour or texture information to improve the
performance. In addition, from a practical point of view,
other modalities such as text or attributes can be combined
with sketch together. Besides, human feedback and human
attention are another two important aspects for retrieval task.
Given the fact that drawing a sketch is a dynamic process, it
will be interesting to see if human attention can be detected
from the drawing process and used to guide automated atten-
tion learning.
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Fig. 5 Visualisation of the retrieved results on the new QMUL FG-SBIR database and the QMUL handbag dataset
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Fig. 6 Visualisations of retrieved results on Sketchy database
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