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Abstract—Reconstructing a 3D shape based on a single sketch
image is challenging due to the inherent sparsity and ambiguity
present in sketches. Existing methods lose fine details when
extracting features to predict 3D objects from sketches. Upon
analyzing the 3D-to-2D projection process, we observe that the
density map, characterizing the distribution of 2D point clouds,
can serve as a proxy to facilitate the reconstruction process.
In this work, we propose a novel sketch-based 3D reconstruc-
tion model named SketchSampler. It initiates the process by
translating a sketch through an image translation network into
a more informative 2D representation, which is then used to
generate a density map. Subsequently, a two-stage probabilistic
sampling process is employed to reconstruct a 3D point cloud:
firstly, recovering the 2D points (i.e., the x and y coordinates)
by sampling the density map; and secondly, predicting the depth
(i.e., the z coordinate) by sampling the depth values along the
ray determined by each 2D point. Additionally, we convert the
reconstructed point cloud into a 3D mesh for wider applications.
To reduce ambiguity, we incorporate hidden lines in sketches.
Experimental results demonstrate that our proposed approach
significantly outperforms other baseline methods.

I. INTRODUCTION

SKETCH is an intuitive form for individuals to express
their ideas and has long been employed in 3D modeling.

With the rapid advancements in deep learning and eXtended
Reality (XR) techniques, sketch-based 3D modeling has gar-
nered increasing interest as a form of User-Generated Content
(UGC). This task holds immense potential in various domains,
such as design, animation, and entertainment, captivating both
academic researchers and industry professionals [1].

In recent years, significant strides have been made in the
field of sketch-based 3D modeling [2]–[5]. Inspired by the
success of image-based single-view 3D reconstruction (SVR)
[6]–[8], most sketch-based 3D modeling approaches adopt a
well-established SVR pipeline [2]–[4]. This pipeline involves
encoding a sketch into a feature vector using a convolutional
neural network (CNN) and utilizing 3D decoders to generate
3D coordinates that define the 3D shape. Generating fine
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Fig. 1. The motivation of our work. We can see: 1) a 2D point cloud can be
generated by projecting a 3D shape onto an image plane. On the projection
plane, some locations have more than one 2D point with different depth values.
2) the distribution of 2D points can be characterized by a density map, where
the value at each location indicates the probability of points projected at that
location. ‘Red’ color indicates higher density. 3) the density map is spatially
rough-aligned with the sketch.

details of a 3D shape from global features poses a challenge
due to the substantial domain gap between a sketch and a
3D shape. To enhance the fine details of the generated 3D
shape, some pipelines [5], [9], [10] in SVR and sketch-based
3D reconstruction extract local features to recover the fine
details in the generated 3D shape. However, these approaches
have not effectively addressed the inherent ambiguity when
inferring local shapes from sketches. For instance, blank areas
within a sketch may correspond to 1) a simple surface, 2) a
surface obscured by objects behind it, or 3) the absence of any
specific 3D shape.

Figure 1 illustrates a 2D point cloud projected from a 3D
shape. Note that on the projection plane, there could be more
than one 2D projected point with different depth values at the
same location due to occlusions. The distribution of 2D pro-
jected points can be characterized by a density map, indicating
the probability of points projected at each location. In other
words, with a density map, we can infer the corresponding 2D
point cloud. Considering that both the sketch and density map
are 2D images, their domain gap is supposed to be smaller
than that between sketch and 3D shape. This motivates us
to introduce the density map as a proxy to facilitate sketch-
to-3D reconstruction. Namely, given an input sketch, the
reconstruction model first predicts a density map to recover
the 2D projected points and then predicts the depth value
for each 2D point. Finally, we employ an inverse-projection
function to map the 2D projected points and their depths into
a 3D point cloud. The adoption of the density map in our
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approach offers two significant advantages: 1) It alleviates
the ambiguity in understanding blank areas of sketches during
3D reconstruction. These blank areas in sketches often pose
challenges for accurate 3D modeling as they may represent
varying geometric or spatial information. Utilizing a density
map allows for a more effective interpretation of these regions,
thereby reducing uncertainties in interpretation. 2) The density
map serves as a regular, rasterized representation. Compared
to the direct prediction of irregular point cloud representations,
the density map offers a more structured and regular data
format, which is more conducive for traditional convolutions.
Point clouds, being irregular and sparse data representations,
pose challenges for traditional convolutions due to difficulties
in capturing the spatial relations and structural features of
the point cloud data. In contrast, the grid-like regularity of
density maps provides a more manageable and analyzable data
structure, enhancing prediction accuracy and efficiency.

Although introducing the density map can reduce the do-
main gap between 2D sketches and 3D shapes, the ambiguity
nature of sketches still poses a challenge. We observe that
artists often utilize hidden lines to imply the structure of
objects [11], [12]. The presence of hidden lines in sketches
can suggest the contours and geometric features of objects
through extensions, variations, and partial occlusions. These
lines provide indirect but valuable clues for understanding
sketches, helping us infer the structure of occluded regions.
To differentiate the information expressed by hidden lines, we
adopt a tri-channel sketch representation for the input to our
3D reconstruction network. Furthermore, for sketches that do
not include hidden lines, we additionally train a neural network
to predict a tri-channel sketch representation that incorporates
hidden lines.

In this work, we present a new method for sketch-based
SVR. We employ a sketch translator and a point cloud gen-
erator to produce point clouds. The sketch translator adopts
a CNN-based encoder-decoder network, where the encoder
network extracts features from the input sketch and the de-
coder network infers target 3D information, outputting a more
informative 2D representation. Based on the output of the
sketch translator, our point cloud generator aims to reconstruct
a point cloud of the corresponding 3D shape. It first predicts
the density map, which can be used as guidance to recover
2D point clouds, and then samples along a ray determined by
each 2D projected point to predict depth values, where the
point with farther depth values means it is occluded by the
point with nearer depth values.

Considering that mesh representation has a broader range
of practical applications, such as in physics simulation and
ray tracing calculations, we utilize Poisson surface recon-
struction to recover meshes from point clouds. To achieve
improved mesh reconstruction results, we further enhance the
point cloud. An additional sketch translator and point cloud
enhancement network collaborate to upsample the point cloud
and predict normals for each point. This process results in
an enhanced point cloud with normals. Subsequently, this
enhanced point cloud is utilized as the initial value in the
Poisson equation solver to reconstruct the surface and generate
the 3D mesh representation.

To demonstrate the effectiveness of our proposed model,
we train and test it on a newly rendered dataset, Synthetic-
LineDrawing. It is worth noting that a sketch may exhibit
different levels of deformation and abstraction. Here we fo-
cus on sketches with reliable shape and fine-grained details,
i.e., sketches with significant deformation or only expressing
conceptual ideas are not considered in this work.

The contributions of this work can be summarized as
follows:

• First, we present a novel method for sketch-based single-
view 3D reconstruction, in which a 3D shape is recovered
in two easier but indispensable steps, sketch translation
and point cloud generation. A sketch-aware mesh gener-
ator is further introduced to convert a 3D point cloud into
a mesh.

• Second, we formulate the point generation process as
a two-stage probabilistic sampling process, where the
density map is introduced as guidance.

• Third, we explore the potentials of hidden lines in re-
ducing the ambiguity of sketches. To the best of our
knowledge, this is the first time hidden lines are utilized
for sketch-based 3D reconstruction.

• Fourth, we conduct extensive experiments to demonstrate
the effectiveness of the proposed model on both synthetic
and hand-drawn sketch datasets.

A preliminary version of this work has been published in
ECCV 2022 [13]. Compared to the conference version, we
have made several improvements. First, we incorporate hidden
lines into sketches, commonly used in industrial scenarios but
not yet fully explored in academia, to address sketch sparsity
and ambiguity issues. We will show that utilizing hidden lines
can significantly improve the reconstruction quality. Second,
we extend the ability of SketchSampler to generate a 3D mesh,
allowing for a broader range of practical usage such as physics
simulation and ray tracing calculations. A novel sketch-aware
point cloud enhancement network is proposed for mesh gener-
ation. Third, we compared more baselines, including [5], [10],
and conducted additional experiments concerning robustness
to provide more discussions and insights about this task.

II. RELATED WORKS

A. Single-view 3D Reconstruction (SVR)

3D reconstruction is a problem that has been widely studied
in computer vision. Reconstructing a 3D shape from a sin-
gle image is an ill-posed problem that requires strong prior
knowledge. In recent years, with the development of deep
learning, neural networks can be used to extract useful features
for 3D reconstruction [14]–[17]. The early works focus on
reconstructing 3D shapes represented by regular voxels [18]–
[20]. This regular grid allows for a direct transposition of
2D convolution operations into 3D voxel space, making it
cost-effective in terms of network design. However, the com-
putational and memory cost of 3D voxels scales cubically,
restricting their resolution and limiting their ability to capture
fine-grained 3D structures and need further detailization [21].
Sparse 3D voxels were introduced to overcome the limitations
of regular voxel grids [22]–[24]. Approaches like octree [22]
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and hash representations [25] use specialized data structures to
improve storage and computational efficiency, enabling higher
resolutions.

MarrNet [19], 3DensiNet [20] and ZeroShape [26] resorted
to intermediate representations (i.e., 2.5D sketches, density
heat-map and projection map) to facilitate reconstruction. In
this work, we introduce the density map as a proxy, which re-
flects the probability of points projected at each location of the
image plane. Unlike MarrNet and 3DensiNet, which directly
reconstruct 3D shapes from intermediate representations, and
ZeroShape, which employs only the visible surface as its
intermediate representation, our approach utilizes a density
map to guide the sampling of 2D points. Subsequently, both
visible and invisible depth values are predicted from these
sampled points.

Point clouds are another common representation for 3D
shape generation [17], [27], [28]. They offer spatially adaptive
representation without requiring additional data structures.
However, point clouds do not inherently capture the surface-
based representation of 3D shapes, which limits their ap-
plicability in scenarios such as physics simulations and ray
tracing. Mesh is the most common 3D representation in
computer graphics and is also used for 3D generation [29]–
[31]. However, mesh structures are inherently graph-based,
and deep neural networks still face various limitations when it
comes to generating complex graph structures. These methods
are only capable of generating 3D objects with a genus of 0,
restricting their topological complexity.

Recently, implicit 3D representations utilize coordinate
conditioned Multi-Layer Perceptrons (MLPs) to describe 3D
shapes [32]–[34]. They define implicit 3D fields that corre-
spond to the 3D shape, mapping 3D coordinates to values.
For instance, OccNet [33] employs MLPs to map 3D co-
ordinates to occupancy values, while DeepSDF [34] maps
3D coordinates to signed distance function (SDF) values. [9],
[33], [35] explore 3D reconstruction based on implicit surface
learning. These methods employ the marching cubes algorithm
to extract isosurfaces from the given field during the inference.
Implicit representations offer enhanced 3D representation ca-
pabilities but often require carefully designed regularization
losses to avoid artifacts.

While SVR based on natural images has been extensively
explored and has recently achieved remarkable results [36],
[37], 3D reconstruction based on sketches has been explored to
a lesser extent. In comparison to natural images, sketches are
colorless and lack details, and most clues for depth prediction
in photos are not available in sketches. Therefore, directly
adapting SVR from natural images to sketches does not yield
good results.

B. Sketch-based Shape Reconstruction and Generation

Sketch-based modeling is a problem that has been studied
for a long time. The earlier methods extracted local geometric
properties from hand-crafted rules and then inferred the 3D
shape from the geometric properties [38], [39]. In recent years,
some deep learning based methods have been proposed for
sketch-based 3D modeling. Wang et al introduced a method

to reconstruct 3D shapes based on retrieval [40]. The work [2]
proposed to generate point clouds from a single hand-drawn
image. They enhanced the PSGN [6] method with a viewpoint
estimation module. To alleviate the deformation of sketches,
they correspondingly proposed a sketch standardization mod-
ule. The work [39] discussed the additional challenges of line
drawings in comparison with images in 3D reconstruction. In
[38], sketches from two viewpoints were used as the input
to perform 3D reconstruction. Sketch2model [3] alleviated
the ambiguity in sketch modeling by decoupling view code
and shape code. Sketch2mesh [4] used an encoder/decoder
architecture to learn a latent representation of an input sketch
and refined it by matching the external contours of the recon-
structed 3D mesh to the sketch during the inference process.
While achieving good performance, this approach is time-
consuming. Most deep sketch modeling methods encode a
sketch as a latent code and then apply a decoder to convert the
latent code to a 3D shape. However, these approaches fail to
preserve spatial details in a sketch. LAS-Diffusion [5] utilized
a conditional diffusion model to generate a signed distance
field from the sketch. While this approach employs local
features of the sketch as controlling conditions, it overlooks
the issue of ambiguity caused by blank areas in the sketch and
relies solely on the priors of 3D model distribution to address
occlusion problems. Sketch-A-Shape [41] employs large pre-
trained models to extract features from sketches, achieving
zero-shot sketch-to-3D shape generation. However, the level
of detail in the generated 3D objects remains inadequate.

In the field of sketch-based 3D reconstruction, the explo-
ration of hidden lines has been limited. In CAD modeling [42],
[43], sketches with hidden lines are often used to convey the
shape of occluded parts, thereby reducing ambiguity. However,
these works do not specifically differentiate between hidden
and visible lines. To address this, we have adopted a tri-
channel sketch representation, which aids neural networks in
distinguishing between occluded shapes and visible shapes.
Our approach effectively mitigates the ambiguity of occluded
areas in sketches.

III. METHODOLOGY

As shown in Fig. 2, our sketch-based modeling framework
mainly consists of two stages: the point cloud generation
stage (Sec. III-A) and the mesh generation stage (Sec. III-B).
During the point cloud generation stage, we first predict a
2D point cloud based on the sketch and then perform depth
sampling. In the mesh generation stage, we employ a point
cloud enhancement network to upscale and predict normals for
the point cloud, leveraging sketch features and the enhanced
point cloud is utilized for the Poisson surface reconstruction.
In the end of this section (Sec. III-C), we propose to utilize
hidden lines to address the sparsity and ambiguity problems
of sketches.

A. Point Cloud Generation

Given an input sketch I , the sketch translator T first
translates it to a feature map F . Next, the point cloud generator
produces a point cloud S based on the given feature map F .
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Fig. 2. Our method consists of two stages: the point cloud generation stage and the mesh generation stage. 1) In the point cloud generation stage, the input
sketch is first translated to feature maps. Subsequently, a density map is predicted, from which projection points are sampled. These projection points are then
used to sample corresponding features from the feature maps, enabling the prediction of depth values. 2) In the mesh generation stage, we upsample the point
cloud and predict the corresponding normals. The sketch features are incorporated into the intermediate features of the 3D Unet as additional information.

When recovering the point cloud, a 2D density map is first
predicted, from which 2D points are sampled; then the depth
of each 2D point is predicted by using the proposed conditional
depth generator. Note that in line with [4], [44], we adopt the
commonly used “viewer-centered” setting [45], in which we
assume the image space and the 3D space are aligned.

1) Sketch Translation: The goal of the sketch translator T is
to fully exploit the spatial information in a sketch and generate
suitable features for 3D shape prediction. It is non-trivial
because there is a large information discrepancy between a
sketch and a 3D shape: 1) a sketch is sparse and mainly
preserves structural framework of a corresponding 3D shape.
The object surface, occluded object surface, and vacancy
between surfaces can all be shown as blank in a sketch. 2)
most depth information in a 3D shape is also lost in a sketch
image. Therefore, the sketch translator aims to complement the
missing information. For example, inferring whether a blank
area belongs to an object, or which pixels are on the same
surface.

Specifically, we adopt an encoder-decoder based CNN net-
work for sketch translation. Firstly, an encoder network is
used to extract features from the input sketch with multiple
down-sampling blocks. This is to increase the receptive field
of the neurons to acquire an overview of the input sketch.
A decoder network consisting of multiple upsampling blocks
is then used to gradually infer the information of the 3D
shape with increased spatial resolution. Instead of using the
last feature map Fn for point cloud generation, we use a
similar idea [46] that leverages the feature maps at all scales
by upsampling the feature map at each individual scale F i to
the size of Fn and concatenating them together to produce the
final feature F .

After sketch translation, the response of the feature map F is

much denser than the input sketch while the spatial alignment
and resolution are roughly maintained. It will facilitate the
prediction of point clouds of with fine details, which will be
explained below.

The point cloud generator aims to recover the point cloud
of the corresponding 3D shape S from the translated feature
maps F . To utilize the spatial information of the input sketch,
we decompose the point could generation process into two
steps: 1) predicting the 2D point cloud which is the projection
of the 3D point cloud into the image plane; 2) inferring the
depth of each 2D point.

For generating a 2D point cloud, the point cloud generator
predicts the joint distribution of the coordinates from the
projected points p(X,Y |I), where X,Y are random variables
corresponding to the x, y axis respectively. Sampling from
P (X,Y |I) will generate the 2D point cloud. Figure 1 shows an
example of projecting a 3D shape into the image plane and its
corresponding density map. The probabilistic density at each
location varies because it depends on how many surfaces are
being passed by the ray centered at this location.

After a 2D point cloud is generated, the point cloud genera-
tor predicts the depth distribution of each point p(Zi|xi, yi, I),
where xi, yi is the location of the i-th point in the image plane.
Sampling from P (Zi|xi, yi, I) gives the depth of each point.
Combining x, y coordinates from density map sampling and
z coordinate from depth sampling, the overall 3D point cloud
can be generated.

From a probabilistic view, this process actually models
the shape of a 3D object as a joint distribution of x, y, z
coordinates. Our generation process assumes a factorization
process over projection and conditional independency between
different locations for depth prediction, i.e., P (X,Y, Z|I) =
P (X,Y |I)P (Z|X,Y, I). The first term and the second respec-
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tively correspond to the process of generating a 2D point cloud
and the process of predicting depth given a 2D point cloud and
a sketch.

2) 2D Point Cloud Generation.: As all valid locations must
lay inside the image, we firstly model the distribution of
projected points in pixel coordinates. The image coordinates
can be seen as quantizing the x, y location into W ×H bins,
where Pu,v = P (X = u, Y = v) is the probability of a
projected point inside the (u, v)-th bin.

We use a mask prediction head to directly predict the density
map M ∈ RW×H, where Mv,u = Pu,v . It takes the translated
sketch feature F as the input, and resizes the feature map
to the size of W ×H by using bilinear interpolation. The
interpolated feature map is then passed to three convolutional
layers for density prediction. The hyper parameters W and H
control the resolution of the point clouds.

To generate a 2D point cloud, we can see P (X,Y ) as a
multinomial distribution over W × H locations. We firstly
sample a specific number of locations with the probabilities
defined by the density map M , and then use the column
and row indices u, v as x, y coordinates. We normalize the
coordinate to the range of [−1, 1] 1 to produce the coordinate
in the image plane (xI , yI). It then converts the points to world
coordinates by using the camera parameters. As we use the
orthogonal projection model to produce the rendered sketches,
the x, y coordinates are linearly mapped from that of the 3D
point clouds. That is the x, y coordinates of a point in the raw
3D point cloud, and (x, y) can be computed as (xI/s, yI/s),
where s is a preset parameter of the projection model. Similar
mapping functions can be drawn for other projection models.

3) Conditional Depth Estimation.: After producing the 2D
coordinates (x, y) of the 3D points, the next step is to predict
their z coordinates. Given its x, y location, we assume esti-
mating the depth for each individual point to be independent,
so we predict the conditional depth distribution P (Zi|xi, yi)
separately for each 2D location. Given a x, y location, the
depth distribution P (Zi|xi, yi) can be multimodal and the
number of modes tends to be varied, as there may be one
or multiple points from different surfaces sharing the same
2D location. It is hard to explicitly define the probabilistic
function of P (Zi|xi, yi).

Inspired by the Generative Adversarial Networks [47]–[49],
we use an implicit approach and adopt the generator network
design to model P (Zi|xi, yi). It takes a noise variable N ∈ Rd

and the local feature fx,y as input, and predict a scalar of
depth z, where N is sampled from the uniform distribution
U(0, 1) and fx,y is obtained by extracting from the feature
map F at the corresponding location. Note that the depth
generator can output different depth values given the same
feature and different noise variables. It takes a multi-layer
perceptron (MLP) as the backbone and its parameters are
shared at all (xi, yi) locations.

For inference, we randomly sample a noise vector ni by
following the uniform distribution for each point (xi, yi) in the
predicted 2D point cloud, and then predict the corresponding

1x = 2u
W−1

− 1, y = 2v
W−1

− 1, where u = 0, 1, ...,W − 1, v =
0, 1, ...,H− 1

Algorithm 1 Point Cloud Generation Process
Input: total number of points N , the predicted density map

M , feature map F , and depth generator Td.
Output: the reconstructed point clouds of the sketch S.

1: Let S = ∅
2: while |S| ≤ N do
3: sample a location from the multinomial distribution

defined by M , i.e. (u, v) ∼ Mult(x, y;M).
4: convert u, v to the image plane coordinate xI , yI

5: sample the noise vector n ∼ U(0, 1).
6: inference the depth at u, v: zc = Td(n, Fuv)
7: convert (xI , yI , zc) to the world coordinate:

(x, y, z) = invproj(xI , yI , zc)
8: S = S ∪ {(x, y, z)}
9: end while

10: return S

zi. Putting the 2D location (xi, yi) and depth prediction zi
together will generate the final point cloud S. Note that the
sampled random noise ni controls which mode the predicted
depth zi falls in if the corresponding P (Zi|xi, yi, I) is multi-
modal. Together with 2D point cloud sampling, the two-stage
process can be seen as sampling from the joint distribution
that defines the coordinates of a 3D shape. The detailed
process of point cloud generation is listed in Alg. 1. Note
that our proposed method is compatible with both orthogonal
projection and perspective projection. It can be controlled by
the ‘invproj’ function in Alg. 1.

4) Loss Function: A key role in our proposed approach
is the density map. Fortunately, we can freely produce the
ground-truth density map from a 3D shape by a customized
renderer, i.e., counting the number of points that occurred
when projecting a ray from a 3D point onto an image plane
followed by normalization. To provide supervision information
for the learning process of the density map, we use the L1 loss
as a constraint, as shown in Eq. (1).

LD =
∑
xi,yi

∥p̂(xi, yi)− p(xi, yi)∥1. (1)

To provide supervision information for the learning process of
the conditional generator, we constrain the distance between
the output point cloud and the ground-truth point cloud. We
use the Chamfer distance as the loss function during the
training process. Given two point clouds S, Ŝ ⊆ R3, the
Chamfer distance is defined as Eq. (2). The final loss function
is shown in Eq. (3), and λ1 and λ2 are the weights of LCD

and LD, respectively.

LCD =
1

|S|
∑
p∈S

min
q∈Ŝ

∥p− q∥22 +
1

|Ŝ|

∑
q∈Ŝ

min
p∈S

∥q − p∥22 (2)

L = λ1LCD + λ2LD, (3)

As shown in Fig. 2, during the training process, the feature
maps from the encoder-decoder network are fed into two paths:
1) the convolutional layers to predict the density map; 2) the
fully-connected layers to predict the depth value. Correspond-
ingly, the L1 loss in Eq. (1) and the Chamfer loss in Eq. (2)
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Fig. 3. We incorporate sketch features into the middle features of the 3D
UNet decoder. According to the projection function, we initially transform the
sketch feature Fm into voxel feature Vsketch. Subsequently, we concatenate
it with the feature output from the i-th layer of the UNet. The resulting fused
features are then passed as input to the (i+1)-th layer of the UNet.

are computed, and the gradients from these two losses will be
separately backpropagated along two different paths back to
the encoder-decoder network.

B. Mesh Generation

The goal of mesh generation is to generate a mesh M that
corresponds to the sketch I and the predicted point cloud S.
In our method, we adopt the paradigm of Poisson surface
reconstruction, which is a classic method for reconstructing
surfaces from point clouds. The basic idea of the Poisson
surface reconstruction algorithm is to compute surface normals
based on the sampling information of the discrete point cloud
and use these normals for surface reconstruction. Our surface
reconstruction method consists of three steps:

Step-1: Translate the input sketch to the feature map Fm

using Tm, which has a similar structure with T .
Step-2: Predict an upsampled point cloud Sm with normals

based on the feature map Fm and the point cloud S. This step
is to enhance the point cloud S obtained in Sec. III-A.

Step-3: Solve the Poisson equation with Sm as the initial
value to reconstruct the mesh surface M.

1) Point Cloud Enhancement: To predict the upsampled
point cloud Sm with normals, the point cloud enhancement
network Gm adopts an encoder-decoder network similar to
[50], with the difference that we incorporate the sketch feature
Fm.

The encoder Em of the point cloud enhancement network
takes Fm and S as inputs and outputs a voxelized feature Ve.
The encoder first extracts features from the point cloud S using
a per-point multi-layer perceptron (MLP) [51]. To incorporate
information exchange between points, the encoder employs
local point set feature pooling between layers [50]. Then,
the encoder voxelizes the feature-extracted point cloud S to
obtain a voxelized feature representation, where each voxel
block encapsulates the features of a local point cloud. Next,
the encoder applies a 3D convolutional U-Net network [52] to
obtain the final voxelized feature Vd. The network consists of a
series of down-sampling and up-sampling convolutions as well

as skip connections to integrate local and global information.
To insert the information from Fm into the encoded features,
we voxelize the sketch features. The voxelized sketch features
Vs at the position (x, y, z) are defined as F

(u,v)
m , where

(u, v) = π(x, y, z; c) represents the 2D coordinates of the 3D
coordinates (x, y, z) projected onto the sketch image under
the camera pose c, and F

(u,v)
m is the feature obtained by

bilinearly interpolating the feature map Fm at (u, v). This
process is illustrated in Fig. 3. Then, we concatenate the
voxelized sketch features with the intermediate features of
the 3D U-Net network in the feature dimension. Since the
intermediate features in the U-Net encoder are connected to
the U-Net decoder through skip connections, it is sufficient to
fuse the voxelized sketch features into the voxelized features
on the decoder side.

The decoder Dm of the point cloud enhancement network
takes S and the voxelized features Vd as inputs, performs
upsampling for S, and predicts the normals to obtain Sm.
First, the decoder uses bilinear interpolation on Ve with the
coordinates of each point in S to obtain the features of each
point. Then, it alternates between applying multi-layer per-
ceptrons (MLPs) and average pooling on the feature-enriched
point cloud to process the features of the point cloud. The
final output point cloud has feature dimensions of N×(3+3),
which are interpreted as the offsets and normal directions for
N (upsampling rate) points.

2) Loss Function: To supervise the point cloud enhance-
ment network, we adopt the differentiable Poisson surface
reconstruction (DPSR) [53]. Poisson surface reconstruction
is achieved by solving the Poisson equation, and DPSR is a
differentiable algorithm for solving the Poisson equation. The
Poisson equation arises from the observation that an implicit
indicator function χ can describe the geometry of a solid, and
the zero-level set of χ corresponds to the surface of the solid.
A set composed of point coordinates and normal vectors can
be regarded as a sampling of the gradient of χ. The Poisson
equation belongs to the partial differential equations (PDEs)
and is defined as Eq. (4):

∇2χ = ∇ · ∇χ = ∇ · v. (4)

Here, v is a vector field defined by the normals of the
point cloud. Given the predicted point cloud Sm with normals,
we can use DPSR to obtain the predicted implicit indicator
function χ̂, and then compute the mean square error between
χ and the ground truth χ as the loss function, as shown in
Eq. (5):

LDPSR = ∥χ− χ̂∥2. (5)

During model inference, we utilize the marching cubes
algorithm [54] to extract the isosurface with a value of 0 from
χ̂ as the predicted mesh M.

C. Enhanced Sketch Input with Hidden Lines

Hidden lines refer to the lines indicating the parts of an
object that are obscured from the given view. Hidden lines are
commonly employed in industrial design scenarios, such as
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Front Back Composed

Fig. 4. Our used tri-channel sketch representation. Solid lines are used in the
front sketch and back sketch, while in the composed sketch, the back view is
represented using thin dashed lines.

CAD drafting [42], [43]. We assume that the sketch is made
with hidden lines distinctly marked.

Hidden lines can be used to eliminate ambiguity in cases
where parts of a 3D object are obscured when viewed from a
specific angle. As shown in Fig. 4, if only the front view sketch
is available, the table could either have three legs or four legs,
and the style of the table legs is also uncertain. In contrast,
in the composed sketch where hidden lines are included, as
shown in Fig. 4, such ambiguity can be significantly reduced.

We use a tri-channel representation to depict sketches with
hidden lines, as illustrated in Fig. 4. In addition to the front
view, we include another two channels: the back view and the
composed sketch. For the user input sketch, we represent the
visible lines as the front view. The back view is a combination
of the hidden lines and the outer contours of the visible
lines. The composed sketch contains both the visible lines
(represented as solid lines) and the hidden lines (represented as
fine dashed lines). In the experimental section, we compared
the performance of different representations.

To address the situation in which only the front view sketch
is available, we propose an adaptation strategy. We utilize the
network [49] to generate a tri-channel representation (front
view + back view + composed) based on the front view sketch.
In our experiments, we observed that using either L2 or L1 loss
alone to guide the network’s training led to blurry lines and
the omission of back view lines. Consequently, we adopted a
two-stage approach to accomplish this task.

In the first stage, the input is the front view sketch, and the
training supervision is applying L2 loss to the predicted tri-
channel sketch. In the second stage, the input is the prediction
obtained from the first stage, and the training supervision is
guided by L1 loss for the predicted tri-channel sketch. Through
our experiments, we found that this two-stage prediction
method effectively generates a tri-channel representation from
the front view sketch. We present these results in detail in
the experimental section, showcasing the effectiveness of our
approach.

IV. EXPERIMENT

A. Implementation Details

We use a CNN-based encoder-decoder network [49] as
our sketch translator. The encoder and decoder of Tstage1

consist of three downsampling layers and three upsampling
layers. There are nine residual blocks between the encoder
and decoder. The network outputs a total of four feature maps
with dimensions (channels × height × width) as follows:

{(64×256×256), (128×128×128), (256×64×64), (512×
32× 32)}.

The encoder and decoder of Tm consist of four downsam-
pling layers and two upsampling layers. There are nine residual
blocks between the encoder and decoder. The network outputs
three feature maps with dimensions (channels × height ×
width) as follows: (128× 64× 64), (256× 32× 32), (512×
16× 16).

The density map prediction head contains three convolu-
tional layers with 256, 64, and 1 filters, respectively. The
kernel sizes are 1, 3, and 1. The depth sampler uses a 4-layer
Multi-Layer Perceptron (MLP) with residual connections. The
channel sizes are 64, 32, 16, and 1. During training, we used
real density maps instead of predicted density maps to sample
projection points.

The values of λ1 and λ2 are set to 1 and 104, respectively.
The point cloud refinement network Gm has five basic blocks.
The basic block in the encoder of Gm includes max pooling
of local voxel blocks, while the basic block in the decoder
does not. The resolution of voxels used for feature aggregation
in the encoder of Gm is 323, and the voxelized point cloud
features in Gm have a resolution of 643.

B. Datasets

There is a scarcity of publicly available large-scale paired
sketch-3D datasets. Therefore, we utilized Blender’s freestyle
rendering feature [55] to generate sketch images from 3D
models of 13 categories selected from the ShapeNet dataset
[18]. This contributed to the creation of a new dataset called
Synthetic-LineDrawing.

Previous benchmark methods were trained using different
3D representations such as point clouds, meshes, SDF, etc.,
and employed varying object size and position normalization
strategies. To establish consistency, we adopted the preprocess-
ing approach of DISN [9] for 3D objects, aligning the coordi-
nate system’s origin with the object’s centroid and scaling the
object’s size to fit within a unit sphere. DISN provided both the
preprocessed SDF representation and the mesh representation
of the 3D objects. Additionally, we sampled point clouds from
the mesh surface.

For each object, we randomly sampled five viewpoints,
following the viewpoint sampling strategy of 3D-R2N2 [18].
The azimuth angle was uniformly sampled from 0 to 360
degrees, while the elevation angle was uniformly sampled from
25 to 30 degrees. For each viewpoint, we rendered both a hand-
drawn sketch and a projection density image. When rendering
the projection density image, we utilized the ‘DepthPeeler’
provided by nvdiffrast [56], repeatedly rasterizing the 3D mesh
and incrementing the pixel count for foreground pixels by 1
each time. Finally, we normalized the entire image so that
the sum of pixel values equaled 1, obtaining the projection
density image. Synthetic-LineDrawing comprises a total of
218, 915 sketch images and their corresponding 43, 783 3D
objects, spanning 13 categories. We followed the conventional
training/test split as indicated in [18], with a ratio of 4/5 for
the training set and 1/5 for the test set.
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Sketch Sketch2Points DISN PIFu Sketch2Model Sketch2Mesh LAS-Diffusion SketchSampler SketchSampler(mesh) GT.

Fig. 5. Comparison between our method and baseline methods. SketchSampler represents the point cloud results generated in the first stage, and
SketchSampler(mesh) represents the mesh results generated throughout the entire stage.

C. Training Details

Both stages of the model were trained for 30 epochs with
an initial learning rate of 10−3 using a linear learning rate
decay schedule, where the learning rate decreased gradually
and reached 0 at the end of training. We employed the Adam
optimizer [57] for optimization. The same training/test split
was used for both the point cloud generation stage and the
mesh generation stage of the network.

D. Evaluation Metrics

To evaluate the quality of 3D object generation, we sample
point clouds from the surfaces of 3D objects and compare the
distances between the ground truth and predicted point clouds.
For two point clouds, denoted as X and Y , we employ the
following metrics:

Chamfer Distance (CD): The Chamfer Distance is com-
monly used to measure the distance between two point clouds
and is widely employed in shape comparison. It measures
the distance between each point in one point cloud and the
nearest point in another point cloud. The formula for Chamfer
Distance is defined as follows:

dCD(X ,Y) =
1

|X |
∑
x∈X

min
y∈Y

∥x− y∥22 +
1

|Y|
∑
y∈Y

min
x∈X

∥y − x∥22

Earth Mover’s Distance (EMD): The Earth Mover’s Dis-
tance is also used to evaluate the similarity between two point
clouds. But it is more sensitive to the local details and density
distribution. The EMD is defined as:

dEMD(X ,Y) =
1

|X |
min

ϕ:X→Y

∑
x∈X

∥x− ϕ(x)∥2

Voxel-IoU: Voxel-IoU applies the concept of Intersection
over Union (IoU) to 3D space to evaluate the overlap between
predicted voxel models and ground truth voxel models. It
is computed as the ratio of the intersection volume to the

Sketch Prediction GT. Sketch Prediction GT.

Fig. 6. Density maps generated by our method. Red indicates higher density,
while blue indicates lower density.

union volume. For our case, we voxelized the point clouds
and compared the Voxel-IoU between the two voxelized point
clouds. A higher Voxel-IoU indicates a greater similarity
between the two point clouds. The formula for Voxel-IoU is
defined as follows:

Voxel-IoU(X ,Y) =
intersection(V (X ), V (Y))

union(V (X ), V (Y))

E. Comparison with Existing Methods

We first compare our method with four state-of-the-art
approaches for sketch-based single-view 3D reconstruction
(SVR):

Sketch2Mesh [4]: This method takes a sketch as the input
and predicts a 3D mesh using an encoder-decoder network [8].
It learns a compact feature representation and recovers the 3D
shape by minimizing the 2D Chamfer distance between the
projected contour of the 3D shape and the input sketch.

Sketch2Model [3]: This method aims to reconstruct 3D
meshes from a single sketch. It utilizes an encoder-decoder
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TABLE I
COMPARISON RESULTS ON THE SYNTHETIC-LINEDRAWING DATASET.

Categories meanairplane bench cabinet car chair display lamp speaker rifle sofa table phone boat

Chamfer Distance(↓) ×10−3

Sketch2Mesh [4] 3.785 17.741 8.191 3.029 10.554 9.540 56.554 19.223 2.145 6.139 8.931 7.208 9.621 12.512
Sketch2Model [3] 7.994 15.282 12.081 11.514 15.735 13.006 29.348 22.888 5.422 11.850 21.953 9.814 11.710 14.507
Sketch2Points [2] 18.250 86.600 16.486 9.816 22.276 42.373 30.079 34.625 11.853 42.044 22.067 23.648 6.287 28.185
LAS-Diffusion [5] 3.796 - - 3.235 7.066 - - - 3.162 - 6.353 - - -
PIFu [10] 2.849 4.947 3.817 2.226 5.922 4.378 19.563 10.372 2.820 3.352 4.875 5.625 4.293 5.772
DISN [9] 3.359 9.100 4.838 2.417 8.326 5.832 25.688 12.291 3.243 4.330 8.267 5.507 5.945 7.626
Ours (SketchSampler, 5class) 1.997 - - 1.839 3.324 - - - 1.436 - 2.267 - - -
Ours (SketchSampler(mesh), 5class) 1.977 - - 2.218 4.678 - - - 1.544 - 3.647 - - -
Ours (SketchSampler) 1.848 2.257 2.450 1.719 2.966 2.864 8.593 4.916 1.226 2.285 2.460 3.379 3.189 3.089
Ours (SketchSampler(mesh)) 1.762 3.559 3.521 2.295 4.656 3.352 11.725 8.312 1.366 2.921 3.945 3.392 3.862 4.205

Earth Mover’s Distance(↓) ×10−2

Sketch2Mesh [4] 6.988 11.161 8.935 6.074 10.502 9.235 23.819 12.116 5.566 7.298 9.094 6.773 8.083 9.665
Sketch2Model [3] 11.879 11.683 10.300 9.563 13.344 10.490 20.353 13.338 9.026 9.953 14.063 8.131 10.590 11.747
Sketch2Points [2] 16.084 30.889 20.044 13.065 18.682 25.555 28.954 23.178 15.613 21.871 18.087 21.458 11.718 20.400
LAS-Diffusion [5] 9.343 - - 7.036 9.583 - - - 7.566 - 8.569 - - -
PIFu [10] 6.733 7.969 6.810 5.362 8.677 6.837 16.644 10.174 5.156 5.897 8.047 5.495 6.503 7.716
DISN [9] 6.813 10.208 7.371 5.668 10.700 8.059 19.356 10.820 5.678 6.544 10.528 5.631 7.588 8.843
Ours (SketchSampler, 5class) 8.093 - - 8.621 10.610 - - - 5.063 - 8.580 - - -
Ours (SketchSampler(mesh), 5class) 5.793 - - 5.613 8.035 - - - 4.867 - 6.911 - - -
Ours (SketchSampler) 7.717 8.283 8.489 7.953 10.607 8.651 17.574 11.356 4.655 10.018 8.385 6.134 9.346 9.167
Ours (SketchSampler(mesh)) 5.953 8.064 7.124 5.823 8.225 6.500 15.698 10.229 4.355 5.780 6.825 4.724 6.351 7.358

Voxel-IOU(↑)

Sketch2Mesh [4] 0.640 0.413 0.421 0.550 0.414 0.404 0.294 0.306 0.702 0.422 0.517 0.529 0.457 0.467
Sketch2Model [3] 0.310 0.191 0.199 0.224 0.210 0.228 0.220 0.161 0.376 0.211 0.151 0.302 0.264 0.234
Sketch2Points [2] 0.250 0.101 0.099 0.188 0.121 0.096 0.159 0.071 0.321 0.092 0.156 0.142 0.359 0.166
LAS-Diffusion [5] 0.533 - - 0.475 0.413 - - - 0.612 - 0.496 - - -
PIFu [10] 0.679 0.561 0.559 0.606 0.522 0.497 0.469 0.428 0.741 0.532 0.600 0.581 0.548 0.563
DISN [9] 0.667 0.470 0.501 0.598 0.457 0.463 0.389 0.383 0.752 0.489 0.524 0.638 0.524 0.527
Ours (SketchSampler, 5class) 0.651 - - 0.600 0.529 - - - 0.703 - 0.611 - - -
Ours (SketchSampler(mesh), 5class) 0.702 - - 0.625 0.531 - - - 0.731 - 0.626 - - -
Ours (SketchSampler) 0.660 0.595 0.571 0.614 0.549 0.551 0.485 0.462 0.738 0.538 0.631 0.627 0.552 0.583
Ours (SketchSampler(mesh)) 0.706 0.578 0.587 0.630 0.545 0.556 0.459 0.438 0.768 0.553 0.643 0.675 0.562 0.592

network [7] for mesh reconstruction and introduces an addi-
tional encoder-decoder to decompose the sketch features into
viewpoint and shape spaces. During inference, each 3D shape
is reconstructed based on the input sketch and given viewpoint.

Sketch2Points [2]: This method focuses on reconstructing
3D point clouds from sketches. It is based on PSGN [6]. It
can only generate a very limited number of point clouds.

LAS-Diffusion [5]: This method propose a two-stage dif-
fusion model including occupancy-diffusion stage and SDF-
diffusion stage. This method use a novel view-aware local
attention mechanism to leverage the local information in the
sketch.

We also compare our method with two image-based SVR
methods:

DISN [9]: This method proposes a signed distance field
(SDF) predictor that utilizes both global and local features for
prediction. It can generate detailed 3D shapes by leveraging
local features sampled from the image feature map.

PIFu [10]: PIFu introduces pixel-aligned implicit functions,
which can generate high-resolution surfaces including unob-
served regions. The generated surfaces from PIFu are spatially
aligned with the input image.

We follow their original works of Sketch2Model and
Sketch2Mesh to train an individual model for each category.
For LAS-Diffusion, we use their original settings, training a
5-class model for airplane, car, chair, rifle and table categories.
Correspondingly, we separately trained our model on the same
5 categories as LAS-Diffusion for a direct comparison. For all
methods, we trained the methods on Synthetic-LineDrawing

dataset, and we used real viewpoints as inputs, except for
Sketch2Points, as this method doesn’t require viewpoint in-
formation as input. Furthermore, we sampled 8,192 points to
calculate quantitative metrics for all methods, except for the
Sketch2Points method, which generates only 1,024 points.

The visualizations of different methods are shown in Fig. 5.
The point cloud generated by Sketch2Points has too few
points, making it possible to discern only a rough category.
DISN and PIFu utilize local features to reconstruct the SDF
field representation, but the high degrees of freedom in the
SDF representation result in many floating artifacts. For
instance, noise-like structures appear on the backrest of a
chair. Sketch2Model can only generate shapes with genus 0,
and the surfaces are excessively smooth. Sharp transitions,
such as the connection between the support surface and the
backrest of a chair, are not well represented. In the refine
stage of Sketch2Mesh, only the outer contour information
of the sketch is utilized, which means that internal details
are not faithfully reflected in the 3D shape. For example,
hollow sections on the back of a chair or the number of
partitions in a table cannot be effectively conveyed. LAS-
diffusion employs a diffusion model to learn the distribution
of 3D objects, resulting in higher visual quality. However,
the information from the sketch is not faithfully represented
in the 3D objects. Our method outperforms all competing
methods. The reconstructed point clouds by SketchSampler
have correct category labels and exhibit a significant level of
detail, despite our model being trained only once and being
category-agnostic. The overall layout of the point clouds aligns
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Fig. 7. Robustness on line width variations. The linewidth scales for model inference are 0.5 (top row), 1.0 (middle row), 2.0 (bottom row).

well with the input sketches. Point cloud enhancement further
enhances the quality by eliminating artifacts. Even thin parts,
such as chair back and table legs, are faithfully captured in our
generated 3D shapes. This is because our approach employs
normals based on point cloud data to describe surfaces, which
introduces a certain degree of regularization, leading to results
that are less prone to artifacts compared to DISN and PIFu.

The quantitative results are shown in Table I. Although the
performance ranking of these models varies under different
evaluation metrics, our method consistently outperforms others
in terms of all metrics, on average across categories. Except
for EMD, our model performs the best over all categories. It
suggests that our reconstructed 3D shape captures both global
structure and the local details. For the CD metric, the point
cloud generated by SketchSampler is better than the surface-
sampled point cloud from SketchSampler(mesh). However, for
the EMD and IOU metrics, SketchSampler(mesh) generally
performs better. This discrepancy can be attributed to the
fact that SketchSampler employs CD as a direct learning
objective and CD is not sensitive as EMD and IOU. Therefore,
although the mesh surface-sampled point cloud from Sketch-
Sampler(mesh) has fewer outliers since it is constrained and
has fewer degrees of freedom compared to SketchSampler,
SketchSampler(mesh) is inferior to SketchSampler in terms of
CD but superior in terms of EMD and IOU. Furthermore, we
observed that our models trained on 13 categories outperform
those trained on just 5 categories. This observation suggests
that our model is capable of capturing more fundamental
patterns from a broader range of category data, rather than
just recognizing specific instances. Therefore, training on
additional categories can enhance the testing performance for
the 5-category scenario.

Sketch SketchSampler SketchSampler(mesh)

Fig. 8. Robustness on sketch without hidden lines. To facilitate the observation
of the impact of hidden lines, we present two perspectives: front view and
back view.

F. Robustness

Line Width Variation. To test the sensitivity of our method
to sketch line width, we conducted evaluations on sketches
with varying line widths. Based on Synthetic-Line drawing,
we doubled and halved the line width of the sketches to create
thinner and thicker versions, referred to as “thin” and “fat”
sketches, respectively (as shown in Fig. 7). These altered line-
width sketches were then fed into the Point Cloud Generation
network and Mesh Generation network. The results of these
tests are shown in Fig. 7. It can be observed that our method
exhibits a certain degree of robustness to changes in line width.
Increasing the line width tends to lead to a more pronounced
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Fig. 9. Robustness on hand-drawn sketches. The model has not undergone any fine-tuning. Point cloud and mesh results are both generated by the model
trained on Synthetic-LineDrawing.

Sketch SketchSampler SketchSampler(mesh)

GT. viewpoint

-20°

-10°

+10°

+20°

Sketch SketchSampler SketchSampler(mesh) Sketch SketchSampler SketchSampler(mesh)

Fig. 10. Robustness on noise views. We use the corresponding camera pose to perturbed azimuth angle. The noisy pose is utilized as an input parameter for
the projection and back-projection functions.

degradation in generation quality compared to decreasing the
line width. For example, there are two planes and a sofa show
some incompleteness in the reconstructed points when the
line width is increased. Fortunately, due to the point cloud
enhancement, these incompleteness are not reflected in the
generated mesh.

Sketch without Hidden Lines. Then we evaluate the impact
of hidden lines. To simulate the absence of hidden lines, we
substituted the “composed” channel with the “front” channel
and set all values in the “back” channel to white. The results
of these tests are presented in Fig. 8. It is evident that the
quality of the reconstructed shapes significantly deteriorates
when hidden lines are removed. These results were expected
since our model was trained on datasets that include hidden
lines. Therefore, removing hidden lines during testing intro-
duces a significant distribution shift, resulting in unsatisfactory
performance. We further conducted an experiment to show the
impact of hidden lines in Sec. IV-G.

Hand-drawn Sketches. Subsequently, we proceeded to eval-
uate the performance of our method on hand-drawn sketches.
Given the current absence of datasets that combine hand-

drawn sketches with hidden lines, we took it upon ourselves to
manually curate a collection of hand-drawn sketches featuring
hidden lines. For each object, we systematically sampled
an azimuth angle ranging from 0 to 360 degrees and a
elevation angle between 25 to 30 degrees to ensure diversity.
Subsequently, we rendered corresponding front and back view
images for each sketch, which were then presented to users
as visual references. During the sketching process, users were
granted the flexibility to toggle between different line styles,
enabling them to distinguish between drawing the front and
back views. Additionally, they could switch the displayed
reference images between the front and back views at their
drawing. The reference images, hand-drawn sketches, and the
results generated by our method are shown in Fig. 9. Our
method demonstrates a commendable ability to handle hand-
drawn sketches, yielding remarkably accurate outcomes.

Noisy Viewpoints. Then we conducted evaluations of our
method’s performance under different noisy viewpoints. We
introduced perturbations to the azimuth angles of the sketches
in the Synthetic-LineDrawing dataset. The magnitudes of these
perturbations were set to {−20°,−10°,+10°,+20°}. For each
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Sketch View #1 View #2 View #3 View #4 View #1 View #2 View #3 View #4

Fig. 11. Multi-view visualizations of meshes (left) and point clouds (right) generated by our method. View #1 to #4 correspond to azimuth angles of {0°,
45°, 90°, 270°} respectively. The elevation angle is set to 20◦.

original input sketch sample, we generated four variations
by applying these angle perturbations, resulting in a total of
four different perspective-distorted input sketch samples for
each original. Within our method, two operations incorporate
viewpoint information. Firstly, in the point cloud generation
stage, the reverse projection function π−1 integrates view-
point information. Secondly, in the mesh generation stage,
the projection function π incorporates viewpoint information.
Notably, the second application of the projection function’s
viewpoint noise can effectively counterbalance the viewpoint
noise introduced by the reverse projection function. As a
result, the noise in viewpoint information does not lead to
erroneous mappings between 2D features and 3D positions.
Nonetheless, the noise in viewpoint information can cause a
misalignment between the input point cloud generated during
the mesh generation phase and the world coordinate system.
This discrepancy arises due to deviations from the distribution
during training. As shown in Fig. 10, it is apparent that the
noise in viewpoint information exerts a negligible impact on
the quality of the generated results. This finding highlights the
robustness of our method to variations in viewpoint noise.
Visualization from Multiple Viewpoints. We also present
visualizations of meshes and point clouds from multiple per-
spectives to further demonstrate the robustness of our model.
Specifically, we set the elevation angle at 20° and the azimuth
angles at {0°, 45°, 90°, 270°} degrees to visualize the meshes
and point clouds generated by our method. Figure 11 displays
the results of these multi-view visualizations, confirming that
the meshes and point clouds produced by our approach main-
tain fidelity when observed from various angles.

G. Ablation Study

Density-guided Sampler. In the point cloud generation pro-
cess, our method utilizes a density map as guidance for
sampling the u and v coordinates. To further validate the

Sketch Point Cloud w/o sketch w/ sketch

Fig. 12. Ablation results on sketch-aware mesh generation.

effectiveness of the density map, we compare our sampler
with another two variants, which treat the 3D information as
uniformly distributed in the 2D space. Specifically, the term
“uniform sampler” refers to the variant that samples points
uniformly from a foreground region, which is derived from the
ground truth density map with a threshold set to zero, during
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TABLE II
THE IMPACT OF DIFFERENT DENSITY MAPS ON THE POINT CLOUD RECONSTRUCTION. (EARTH MOVER’S DISTANCE(↓) ×10−2)

Categories meanairplane bench cabinet car chair display lamp speaker rifle sofa table phone boat

ours 7.717 8.283 8.489 7.953 10.607 8.651 17.574 11.356 4.655 10.018 8.385 6.134 9.346 9.167
real sampler 7.559 8.073 8.267 7.779 10.594 8.540 17.315 11.142 4.519 10.024 8.378 6.034 9.105 9.025
uniform sampler 8.110 8.849 8.884 8.021 11.701 8.899 16.033 11.416 4.699 10.298 8.875 6.035 8.989 9.293
uniform sampler (retrained) 8.337 8.922 9.068 8.359 11.958 9.003 16.181 11.735 4.749 10.680 8.847 6.057 9.121 9.463

TABLE III
THE IMPACT OF DIFFERENT SKETCH REPRESENTATIONS ON THE POINT CLOUD RECONSTRUCTION. (EARTH MOVER’S DISTANCE(↓) ×10−2)

Categories meanairplane bench cabinet car chair display lamp speaker rifle sofa table phone boat

ours (front + back + composed) 7.717 8.283 8.489 7.953 10.607 8.651 17.574 11.356 4.655 10.018 8.385 6.134 9.346 9.167
front × 3 8.017 8.837 11.749 8.011 11.918 9.293 18.581 14.366 4.844 10.053 10.260 6.553 8.622 10.085
composed × 3 7.955 8.573 9.075 8.499 10.847 8.694 17.964 11.438 4.896 9.672 9.357 6.070 9.180 9.402
front + hidden + composed 7.855 8.400 8.761 7.945 10.778 8.608 17.861 11.630 4.784 10.019 8.696 6.038 9.216 9.276
predicted 3-channel sketch 8.061 8.878 8.814 8.637 11.194 8.987 18.752 11.815 5.072 10.604 8.748 6.489 9.745 9.677

TABLE IV
THE EFFECTIVENESS OF INCORPORATING SKETCH IN THE MESH RECONSTRUCTION. (EARTH MOVER’S DISTANCE(↓) ×10−2)

Categories meanairplane bench cabinet car chair display lamp speaker rifle sofa table phone boat

Gm w/ sketch (Ours) 5.953 8.064 7.124 5.823 8.225 6.500 15.698 10.229 4.355 5.780 6.825 4.724 6.351 7.358
Gm w/o sketch 6.091 8.134 7.225 5.936 8.591 6.757 16.101 10.111 4.447 5.898 6.877 4.768 6.353 7.484

Sketch SketchSampler SketchSampler(mesh)

Fig. 13. Impact of hidden lines. For each example, the first row shows the
results of our model trained on sketches without hidden lines, while the second
row shows the results of our final model, which is trained on sketches with
hidden lines. It is clear to see that introducing hidden lines can significantly
help to eliminate the ambiguity of sketches and lead to better performance.

inference. We also experimented by retraining our network to
directly predict the foreground mask. This variant is denoted as
“uniform sampler (retrained)”. Additionally, we employed real
density maps to generate projection points for testing, which
we refer to as the “real sampler”.

The experimental results are shown in Table II. The uniform
sampling strategy does not allow the sampler to perceive
the differences in the distribution of p(d|u, v; I) at different

Input SketchSampler SketchSampler(mesh)Prediction

Fig. 14. Adaptation to the front view sketch. The green lines in ’Prediction’
represent lines that only appear in the front view, the purple lines represent
lines that only appear in the back view, and the black lines represent lines
that appear in both the front view and the back view.

positions. We can observe that the reconstruction performance
is worse when using the uniform sampler compared to our
method. Moreover, if the quality of the density maps reaches
real data, then the overall quality is further improved. This
comparison demonstrates the effectiveness of our density-
guided sampler. By incorporating the density map as guidance,
our method can capture the distribution characteristics of
the 3D information in the 2D space, leading to improved
reconstruction performance.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Sketch-aware Point Cloud Enhancement. In our point cloud
enhancement network, we introduce sketch local features as
additional information. This is because the initial reconstructed
point clouds may contain various types of noise. By incorpo-
rating sketch as additional input, we can improve the quality
of the enhanced point cloud. We removed the sketch and its
corresponding sketch translator, then retrained the model for
the mesh generation stage. Subsequently, we conducted tests
to validate the effectiveness of this design alteration. As shown
in Tab. IV, by leveraging the sketch local features, our point
cloud enhancement network achieves higher-quality recon-
structions. Sketch information provides valuable guidance for
normal prediction and denoising the initial reconstructed point
clouds. The comparisons presented in Fig. 12 demonstrate the
enhanced details and better alignment with the input sketches
in the reconstructed mesh. Sketch information helps to capture
finer details, improve the overall shape accuracy, and enhance
the structural integrity of the reconstructed mesh.
Impact of Hidden Lines. To demonstrate the impact of hidden
lines on the task of 3D reconstruction from a single sketch,
we conducted a retraining process on both the point cloud
generation model and the mesh generation model using the
Synthetic-LineDrawing dataset without hidden lines. For the
newly trained models, the input sketches for all three channels
were front view sketches. We then evaluated the quality of
both point cloud and mesh generation. The quantified results,
presented in Table II and Table IV, clearly indicate a noticeable
decline in performance when sketches lack hidden lines.
Figure 13 provides visual examples illustrating the results,
showing that the reconstructions without hidden lines, while
maintaining acceptable quality from a frontal perspective, ex-
hibit evident deficiencies when viewed from the back. Notably,
discontinuities are observable, such as in the connections
between table legs and among the table legs themselves.

Furthermore, we evaluated the adaptation to the front view
sketch. Specifically, we introduced a network to automatically
predict the tri-channel representations from a front view sketch
and then feed the prediction to SketchSampler. Visual and
quantitative results are presented in Fig. 14 and Table III,
respectively. It can be observed that the adaptive version of
Sketchsampler outperforms the Sketchsampler trained solely
on front view sketches, further indicating the benefits of
explicit hidden lines for 3D reconstruction tasks.

V. LIMITATIONS

While our approach accurately captures the intricacies
present in hand-drawn illustrations, it is not a probabilistic
generative model. This implies that it does not explicitly model
the distribution of the 3D object. Consequently, our method
might produce point clouds and meshes that deviate from the
true distribution. For example, Fig. 15 shows several failure
cases where the input sketches feature complex structures. In
such cases, the resulting point clouds exhibit poor quality,
and the subsequently predicted normals have low accuracy,
making the generation of a plausible mesh unattainable. In
the future, incorporating probabilistic generative models can
further address this issue, enhancing the visual quality of
generated objects.

Sketch SketchSampler SketchSampler(mesh) Predicted Normals Ground Truth Normals

Fig. 15. Failure cases. Our approach tends to introduce confusion in normal
prediction during point cloud enhancement when the input sketches feature
complex structures, thereby hindering mesh surface reconstruction.

VI. CONCLUSION

In this study, we introduce a novel method for sketch-based
single-view 3D reconstruction, termed SketchSampler. Our
approach not only generates point clouds from a single sketch
but also provides the option to create a mesh. For point cloud
generation, we introduce a depth sampling algorithm and use
a density map as guidance for the sampling process. In mesh
generation, we incorporate sketch features as supplementary
information to aid in mesh reconstruction. Additionally, we
create a dataset named Synthetic-LineDrawing, comprising
paired sketches with hidden lines and their corresponding
3D objects. Compared to previous works on sketch-based 3D
generation, our method effectively leverages the local features
extracted from the sketch. Furthermore, we explore the role of
hidden lines in sketch-based 3D reconstruction. Quantitative
and qualitative results indicate that our method outperforms
state-of-the-art approaches and demonstrates a significant level
of robustness to input sketches.
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